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Supervisor’s Foreword

Marcin Mucha-Kruczyński’s Ph.D. Thesis presents the theory of three key
elements of optical spectroscopy of the electronic excitations in a new material
called bilayer graphene: angle-resolved photoemission spectroscopy (ARPES),
electronic contribution to the visible range Raman spectroscopy (ERS), and far-
infrared (FIR) magneto-spectroscopy. Bilayer graphene consists of two coupled
honeycomb layers of carbon atoms and is a close relative of graphene, single layer
of carbons. In the short time span of several years since their discovery, graphene
materials have shown themselves to be extraordinary—they combine reduced
dimensionality with the properties of the carbon–carbon sp2 bond, to produce the
thinnest yet strongest materials found so far, with high electron mobility and
thermal conductivity. One of the peculiarities of graphene is that the electrons in
the crystal behave like chiral particles. This chirality can be characterized by the
topological Berry phase of electrons, which, in turn, depends on the number of
graphene layers in the material. The most striking result presented in this Thesis is
the prediction that this electronic chirality can be ‘photographed’ with ARPES,
both for monolayer and bilayer crystals.

It turns out there are reasons to single bilayer graphene out of the group of
graphene materials and to devote a whole Ph.D. Thesis to it. The coupling of two
honeycomb layers of carbons placed on top of each other in the Bernal stacking,
arrangement known from the study of graphite, is already enough to significantly
modify the electronic dispersion in the range of energies relevant for transport as
compared to the single layer graphene. Even more importantly, many of the
properties of bilayer graphene can be controlled by an externally applied trans-
verse electric field which shifts part of the charge carriers between the two carbon
layers and opens a gap in the electronic spectrum. This feature is unique to bilayers
and needs to be taken into account whenever top/bottom gates are used to mod-
ulate the density of carriers in the material. Marcin has shown how such a gap
would manifest itself in ARPES measurements. He also investigated the FIR
spectra of bilayer graphene placed in a strong external magnetic field applied
perpendicularly to the carbon layers and kept at a set filling factor with the help of
gates. To do so, he studied in detail Landau-level structure in bilayer graphene and
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constructed a scheme to self-consistently calculate the charge asymmetry in
magnetic field in order to simulate the experimental situation. It is worth
emphasizing that all of these results were contrasted to and confirmed by
experiments.

Finally, he also investigated the electronic contribution to the Raman spectra of
bilayer graphene. Raman spectroscopy is widely used to characterize carbon
materials and in case of graphene careful analysis of the spectrum yields, among
others, information about the number of layers, domain sizes, and doping levels in
the sample. Nevertheless, the purely electronic in origin contribution to the Raman
spectrum has been, initially, ignored. Marcin offers a comprehensive theory of
inelastic Raman scattering resulting in the electron–hole excitations in bilayer
graphene, at zero and quantizing magnetic fields. He predicts polarization prop-
erties of the dominant excitations and determines peculiar selection rules for the
leading modes in the magnetic field in terms of the inter-Landaulevel transitions as
well as their intensity. All those predictions have been confirmed by experiments
performed after the completion of the Thesis [1, 2].

This Thesis should be useful to those interested in the properties of bilayer
graphene and graphene optics.

Lancaster, UK, April 2012 Prof. V. I. Falko
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Chapter 1
Introduction

1.1 Graphene on Paper and in the Lab

With many models in physics, it is much easier to conceive a Gedankenexperiment
and analyse it on paper, rather than prepare a real-life experiment. It is definitely
the case when imagining a single plane of carbon atoms arranged in a honeycomb
(hexagonal) pattern. As a conceptual building block of graphite [1], this model has
been used by theorists to explain this material’s physical and chemical properties
for more than sixty years [2–4]. It resurfaced now and again, especially with the
discovery of fullerenes [5] and tremendous interest following the rediscovery of
carbon nanotubes [6, 7], both of which can be thought of as constructed from a
layer of tightly arranged benzene rings. Somewhere along the way, the model got a
name—graphene, signalling the presence of the planar sp2 bonds between carbon
atoms and emphasizing its importance in connection to graphite.

In the end, bulk graphite that was the reason for the Gedankenexperiment, had
the main role in the real-life one. In 2004, Andre Geim’s group at the University of
Manchester, experimenting at the time with mechanical exfolation of layers from lay-
ered materials, isolated few-layer graphene films, including a single layer, from thin
samples of highly-oriented pyrolytic graphite [8, 9]. Sheets of carbon, one atom
thick, have been shown to be stable under ambient environment and were suc-
cessfully processed into devices allowing for the investigation of their transport
properties. These were found promising for both fundamental and application-
oriented research: they confirmed theoretically predicted gapless linear dispersion
of the quasiparticles in the vicinity of the Fermi energy, electron mobility∼104 cm2

Vs ,
the mean free path of the order of tenths of micrometer, huge sustainable currents
>108 A

cm2 and unusual sequence of plateaus in the Quantum Hall Effect associated
with an additional electronic degree of freedom due to the symmetry of the crystal
lattice [8, 10, 11]. Those first experiments attracted, therefore, a huge interest in the
condensed matter community. In six years, their seminal Science paper, Ref. [8],
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2 1 Introduction

has been cited more than 2,800 times.1 The on-line archive arXiv.org alone lists
over two thousand papers on widely defined graphene systems (monolayer, bilayer,
few-layer films, nanoribbons, etc.) submitted since 2007. Multiple general [12–16]
and more detailed reviews on synthesis [17, 18], optical [19], Raman [20, 21] and
photoemission [22] studies and electronic structure and transport [23–28] are already
available in the literature.

Other than mechanical exfoliation, ways to obtain graphene were explored and
advances in the epitaxial growth of carbon crystallites and layers on SiC and metallic
substrates [29–31] were taken advantage of. Note that although in some of those cases
prior to 2004 single layers of carbon atoms have been grown on a substrate, their
properties (for example the electronic dispersion at the K point) were dissimilar to
monolayer graphene. Currently, after significant development, graphene-like layers
can also be grown epitaxially on multiple substrates like SiC [32–34], Ni [35–38],
Ir [39], Ru [40–42] or Cu [43]. On some of these, only monolayer or effectively
monolayer-like decoupled layers can be grown while others allow for growth of few-
layer graphene films in various stackings. The technology is already advanced enough
to produce coverage areas of the order of square inch [43–48]. Reliable and detailed
tools for characterisation of all graphene-like systems are necessary to evaluate their
quality quickly and efficiently. At the same time, extensive knowledge of and about
the materials is needed to design future devices and engineer new graphene-based
systems. This thesis describes efforts undertaken to define a minimal theoretical
model, allowing for such prediction, for one of the many materials from the graphene
family, that is bilayer graphene.

1.2 Two Layers: Double the Fun?

Bilayer graphene was first obtained with the scotch-tape technique, originally used
to obtain monolayer graphene. A very ‘messy’ method, it yields at the final stage all
kinds of graphene-based thin films with varying thicknesses. Some of them consist of
two coupled layers of graphene. The most energetically favourable relative arrange-
ment of those layers is the AB (or Bernal) stacking [49], also found in crystalline
graphite [1, 50]. McCann and Fal’ko showed that the low-energy electronic spectrum
of such a system, relevant for transport experiments, is qualitatively different from
the monolayer [51]. Most significantly, the interlayer coupling changes the disper-
sion from linear to quadratic. The resulting quasiparticles now exhibit Berry phase
of 2π leading to, for example, weak localisation instead of weak anti-localisation as
in the monolayer [52, 53]. However, at least in the neutral system, the spectrum is
still gapless. This last fact, together with the quadratic spectrum leads to the pres-
ence of an eightfold, including spin, degenerate Landau level (LL) positioned at zero
energy (Fermi energy in the neutral structure) and yet another unusual sequencing
of the plateaus in the Quantum Hall Effect as the plateau at σxy = 0 is missing [54].

1 According to Thomson’s ISI Web of Knowledge data.



1.2 Two Layers: Double the Fun? 3

McCann and Fal’ko were also the first to point out the possibility of breaking the layer
symmetry by applying an external electric field. This gap was first directly observed
with the help of the angle-resolved photoemission by Ohta et al. [55]. Thus, bilayer
graphene became technologically relevant as one of the several options of introduc-
ing a gap in the electronic spectrum of graphene-based systems. On a more basic
level, bilayer graphene introduced to solid state physics the unique notion of massive
chiral fermions [15].

1.3 Thesis Outline

As explained in the previous section, bilayer graphene, despite its name and origins,
can definitely be considered a material on its own rights, rather than a poor cousin
of (monolayer) graphene. As the experimental effort in its characterisation grows
and first devices are built, it is desirable to construct a theoretical model, simple
yet universal, capturing essential physics in the wide scope of laboratory-relevant
situations. In this thesis, we probe the limits and capabilities of the tight-binding
model constructed for the π electrons only. We use this approximation to describe
theoretically results of selected spectroscopic investigations of bilayer graphene,
namely the angle-resolved photoemission spectroscopy (ARPES), magneto-optical
spectroscopy (MOS) and electronic Raman spectroscopy (ERS). In particular, we
concentrate on the comparison of the so called four-band and two-band models as
we search for the ‘minimal model’ description. We also investigate the importance
of the layer and sublattice symmetry breaking terms.

We start with the introduction of the tight-binding model of π electrons for
graphene systems, presented in Chap. 2. We discuss in detail, the four-band model
describing the π bands within the whole Brillouin zone and the linear approximation
valid only in the vicinity of its corners and define the symmetry-breaking parameters
contained within the model. We also describe the effective two-band, low-energy
approximation for the band structure of bilayer graphene, which is the start point for
a significant part of the theoretical models postulated in the literature to describe the
physics of bilayer graphene.

The choice of spectroscopies for which we aim to provide theoretical description
of corresponding spectra, has been mainly dictated by the developments in the experi-
mental characterisation of graphene materials. The angle-resolved photoemission
studies have been performed extensively on epitaxially grown monolayer graphene
(e.g., [34, 35, 39, 56, 57]). Photoemission is one of the methods used, for example,
to confirm the linearity and lack/presence of gaps in the electronic spectrum of
graphene-like materials. The ARPES spectra of bilayer graphene have been used to
demonstrate directly the presence of the gap in the electronic spectrum as the inter-
layer asymmetry has been introduced [55]. Our model [58], presented in Chap. 3,
examines the angular distribution of the constant-energy maps of the ARPES inten-
sity for monolayer and bilayer graphene. We show how these are related to the chi-
rality of electrons in those systems. Afterwards, we show that for bilayer graphene,
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electronic states belonging to the high-energy bands impact the intensity of the spectra
even when the experiment probes range of energies (as measured from the neutrality
point) usually considered to be well described by the two-band approximation. Fur-
thermore, we explain how the anisotropy of the constant-energy maps may be used to
extract information about the magnitude and sign of interlayer coupling parameters
and about symmetry breaking inflicted on the bilayer by the underlying substrate.

The second spectroscopic method considered in this thesis, magneto-optical
absorption spectroscopy, is one of the experimental tools employed to examine the
electronic states in graphene systems in external magnetic fields [59–68]. In Chap. 4,
we investigate some of the aspects of magneto-optical spectra from the theoretical
point of view. We start with the description of the Landau level structure in bilayer
graphene. We complete the theory based on the two-band model [69, 70] and give
selection rules as well as the optical strengths of the inter-Landau-level excitations
taking into account all four π bands and the physically most relevant asymmetries
[71]. We then look closer at the experimental setup used to probe the Landau level
structure in bilayer graphene and discuss the importance of the external gates used to
vary the carrier density in the bilayer during the experiment. Building on the theory
proposed for the case of no magnetic field [72], we then present a self-consistent
calculation of the electric-field-induced interlayer asymmetry in magnetic fields and
the resulting Landau level structure. We also analyse the magneto-optical spectra
of bilayer flakes in the photon-energy range corresponding to transitions between
degenerate and split bands of bilayers [73].

Finally, in Chap. 5, we turn towards Raman spectroscopy. Routinely used to char-
acterise carbon materials, in graphene systems in particular, it provides information
on, for example, the number of layers, domain sizes, doping levels, thermal con-
ductivity and the structure of edges [20, 21]. Here, we concentrate on relatively
unexplored in graphene materials, purely electronic in origin, processes leading to
inelastic scattering of light from the sample. The experimental approach focusing
on such processes is often called electron Raman scattering/spectroscopy (ERS)
[74]. We study the contribution of the low-energy electronic excitations toward the
Raman spectrum of bilayer graphene for the incoming photon energy � � 1 eV
both in the presence and absence of an external magnetic field [75]. Starting with the
four-band tight-binding model, we derive an effective scattering amplitude that can
be incorporated into the two-band approximation. We show that this effective scat-
tering amplitude is different from the contact interaction amplitude obtained within
the two-band model alone. We then calculate the spectral density of the inelas-
tic light scattering accompanied by the excitation of electron-hole pairs in bilayer
graphene. In the absence of a magnetic field, due to the parabolic dispersion of the
low-energy bands in a bilayer crystal, this contribution is constant and in doped
structures has a threshold at twice the Fermi energy. In an external magnetic field,
the dominant Raman-active modes are the n−→ n+ inter-Landau-level transitions
with crossed polarization of in/out photons. We estimate the quantum efficiency of
a single n−→n+ transition in the magnetic field of 10 T as In−→n+ ∼ 10−12, which
may be experimentally observable.
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We summarise the work presented in this thesis in Chap. 6. Based on Chaps. 3, 4
and 5, we discuss the applicability of the two- and four-band models with respect to
the electronic structure of bilayer graphene around the Fermi energy and prediction
of experimental measurements.
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Chapter 2
The Tight-Binding Approach and the Resulting
Electronic Structure

In this chapter, we describe the crystal and reciprocal lattices of bilayer graphene.
We also discuss briefly the symmetry of the crystal lattice. We then introduce the
tight-binding model for π electrons in bilayer graphene. We start with a general
formulation valid for all points in the Brillouin zone and the resulting electronic
structure. Next, we concentrate on the linear approximation of that model around the
corners of the Brillouin zone. This tight-binding approach is a variation of the tight-
binding model for monolayer graphene as developed historically for applications in
the physics of graphite (then so called Slonczewski–Weiss–McClure model [1–4]).
For an introduction to the tight-binding approach in carbon sp2 materials, see Refs.
[5] or [6]. In the following section, we introduce symmetry-breaking parameters
which will later turn out to be very important when interpreting results of spectro-
scopic measurements. We conclude the chapter with the derivation of the effective
low-energy, two-band Hamiltonian for bilayer graphene.

2.1 The Crystal and Reciprocal Lattices

Bilayer graphene consists of two coupled graphene layers of carbon atoms (graphene
monolayers) arranged in Bernal (AB) stacking [7, 8]. The unit cell contains four
inequivalent carbon sites A1, B1, A2, and B2, where A and B denote two triangular
sublattices in the same layer while 1 and 2 distinguish between the bottom and top
layer, respectively. The real lattice of bilayer graphene is schematically shown in
Fig. 2.1a. The honeycomb lattice of the bottom and top layers has been drawn with
red and black solid lines, respectively. The lattice constant a, that is the A − A (or
B − B) distance, marked in the figure with grey, equals 2.46 Å. This lattice constant
derives from the benzene-ring structure and is the same in bilayer graphene as in
monolayer graphene or graphite. The interlayer distance, c0, is much greater than
the nearest neighbour carbon-carbon distance a√

3
Å. X-ray reflectivity experiments

and first-principles calculations performed for bilayer graphene epitaxialy grown on

M. Mucha-Kruczyński, Theory of Bilayer Graphene Spectroscopy, 9
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Table 2.1 Components of the vectors in the real and reciprocal lattices shown in Fig. 2.1 and used
throughout the text

vector component a1 a2 d1 d2 d3 b1 b2 K+ K−
x or kx

a
2

a
2 0 a

2 − a
2

2π
a

2π
a

4π
3a − 4π

3a

y or ky
a
√

3
2 − a

√
3

2
a√
3
− a

2
√

3
− a

2
√

3
2π

a
√

3
− 2π

a
√

3
0 0

SiC [9], as well as first-principles calculations for bilayer in vacuum [10], lead to
co ≈ 3.35 Å, as in graphite. We choose vectors a1 and a2 as our in-plane primitive
lattice vectors and a rhombic unit cell as shown in Fig. 2.1a with a dashed blue line.
Also shown in the figure are vectors d1, d2 and d3, which can be used to express
the distance between neighbouring in-plane carbon atoms. Eventually, we use vector
c0 = (0, 0, c0) to describe the thickness of the bilayer.

The corresponding reciprocal lattice is schematically presented in Fig. 2.1b. It
is two-dimensional, because bilayer graphene, although strictly speaking three-
dimensional due to the interlayer spacing, is not periodic in the z direction. The
reciprocal unit vectors b1 and b2, related to a1 and a2 via the condition bi ·a j = 2πδi j ,
are shown in darker blue. The Brillouin zone is a hexagon, marked in the figure with
a dashed line. We denote two inequivalent corners of the Brillouin zone (later also
called valleys) as K+ (at the position K+ = (4π/3a, 0)) and K− (at the position
K− = (−4π/3a, 0)) and reserve index ξ = ± to distinguish between them in further
discussions.

The real primitive lattice vectors a1 and a2, reciprocal primitive vectors b1 and
b2, nearest neighbour vectors di , as well as the coordinates of the valley Kξ are
repeatedly used throughout the remaining parts of the thesis. For convenience, all
aforementioned vectors and their components in their respective space have been
summarised in Table 2.1.

2.2 The Four-Band Tight-Binding Model for π Electrons

2.2.1 Full Momentum Dependence

Let us consider an infinite sheet of bilayer graphene. For the origin of the coordinate
system, we choose the centre of a unit cell (position of the B1 − A2 dimer, at the
point halfway between the layers) and denote by r and R0 the position vector and
a vector pointing to the centre of another unit cell (one of N in total), respectively.
We reserve symbol Ri to represent a vector pointing from the centre of a unit cell to
the atomic site i (i then stands for A1, B1, A2 or B2) in this unit cell. We assume
periodic boundary conditions and construct a basis of functions φk,i (r) built up from
the π orbitals ϕ(r) of carbon atoms in site i ,
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(a) (b)

A

x

Fig. 2.1 a Schematic drawing of the bilayer graphene crystal lattice. The bottom (top) layer is
depicted with red (black) solid lines. The real primitive lattice vectors are a1 and a2 and the unit
cell is shown with dashed blue line. Grey line marks the lattice constant a. Vectors d1, d2, and d3,
are used to express the relative position of neighbouring carbon atoms. b The reciprocal lattice of
bilayer graphene with the Brillouin zone shown with the dashed blue line and its two inequivalent
corners (valleys) K+ and K−. In contrast, the dotted blue line shows an alternative, rhombic unit
cell in reciprocal space used briefly in Chap. 3. The orange dashed line shows the high-symmetry
directions for which the band structure in Fig. 2.2 is shown

φk,A1(r) = 1√
N

∑

R0

ei k·(R0−d1− c0
2 )ϕ

(
r − R0 + d1 + c0

2

)
,

φk,B1(r) = 1√
N

∑

R0

ei k·(R0− c0
2 )ϕ

(
r − R0 + c0

2

)
, (2.1)

φk,A2(r) = 1√
N

∑

R0

ei k·(R0+ c0
2 )ϕ

(
r − R0 − c0

2

)
,

φk,B2(r) = 1√
N

∑

R0

ei k·(R0+d1+ c0
2 )ϕ

(
r − R0 − d1 − c0

2

)
,

where k is a two-dimensional electron wave vector.
The electron wave function� j (r), corresponding to the energy eigenvalue ε j (k)

of an electron with wave vector k, is a linear combination of functions in Eq. (2.1),

� j (r) =
∑

i

Ci jφk,i (r). (2.2)

It is easy to see that � j (r) satisfies Bloch’s theorem, as we have

� j (r + ma1 + na2) =
∑

i

Ci jφk,i (r + ma1 + na2) = ei k·(ma1+na2)� j (r). (2.3)

http://dx.doi.org/10.1007/978-3-642-30936-6_3
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By using the variational principle, we arrive with the matrix equation for the column
vector ψ j of the coefficients Ci j ,

Ĥψ j = ε j (k)Ŝψ j . (2.4)

To explicitly write down the form of the Hamiltonian operator Ĥ and the overlap
operator Ŝ, we choose the order of the basis functions from Eq. (2.1) to be

φk(r) = (φk,A1(r), φk,B2(r), φk,A2(r), φk,B1(r))
T .

We assume that the interaction between two carbon atoms depends only on the
distance between them. Also, for a carbon atom on site i , we take into account only
its interaction with the closest carbon atoms on sites j . We make an exception for
the interaction of an atom on site i with another on site i , where we include the
influence of next-nearest neighbour of the same kind. The phase factor resulting
from a summation over nearest neighbours can, for any carbon atom, be written in
terms of the vectors d1, d2 and d3. We define the geometrical factor f (k),

f (k) ≡
3∑

i=1

ei k·di = e
i

ky a√
3 + 2e

−i
ky a

2
√

3 cos
kx a

2
. (2.5)

As a result, the full matrix form of the operators Ĥ and Ŝ is1:

Ĥ =

⎛

⎜⎜⎝

εA1 − γn| f (k)|2 −γ3 f ∗(k) γ4 f (k) −γ0 f (k)
−γ3 f (k) εB2 − γn| f (k)|2 −γ0 f ∗(k) γ4 f ∗(k)
γ4 f ∗(k) −γ0 f (k) εA2 − γn| f (k)|2 γ1

−γ0 f ∗(k) γ4 f (k) γ1 εB1 − γn| f (k)|2

⎞

⎟⎟⎠ ;

(2.6a)

Ŝ =

⎛

⎜⎜⎝

1 0 0 s0 f (k)
0 1 s0 f ∗(k) 0
0 s0 f (k) 1 s1

s0 f ∗(k) 0 s1 1

⎞

⎟⎟⎠ . (2.6b)

In the above, we introduced several parameters into the model as a description
of the strength of interactions between carbon atoms. In this, we mostly follow the
Slonczewski-Weiss-McClure model developed for bulk graphite [1–4] (for a review
see Ref. [8]). The on-site energies εi , couplings γ j and overlap parameters sl used
in Eq. (2.6) are given by:

1 We neglect in Eq. (2.6a) a factor of 3γn appearing on the diagonal as it only leads to a shift of zero
on the energy scale.
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εi ≡ 〈ϕ
(
r − R0 − Ri

)|Ĥ|ϕ(
r − R0 − Ri

)〉, (2.7a)

γ0 ≡ −〈ϕ
(
r − R0 − RA1

)|Ĥ|ϕ(
r − R0 − RA1 − di

)〉 (2.7b)

≡ −〈ϕ(
r − R0 − RA2

)|Ĥ|ϕ(
r − R0 − RA2 − di

)〉,
γ1 ≡ 〈ϕ

(
r − R0 − RB1

)|Ĥ|ϕ(
r − R0 − RA2

)〉, (2.7c)

γ3 ≡ −〈ϕ
(
r − R0 − RA1

)|Ĥ|ϕ(
r − R0 − RA1 + di − c0

)〉, (2.7d)

γ4 ≡ 〈ϕ
(
r − R0 − RA1

)|Ĥ|ϕ(
r − R0 − RA1 − d1 − c0

)〉 (2.7e)

≡ 〈ϕ(
r − R0 − RB1

)|Ĥ|ϕ(
r − R0 − RB1 − d1 − c0

)〉,
γn ≡ 〈ϕ

(
r − R0 − Ri

)|Ĥ|ϕ(
r − R0 − Ri + d3 − d2

)〉, (2.7f)

s0 ≡ 〈ϕ
(
r − R0 − RA1

)|ϕ(
r − R0 − RA1 − di

)〉 (2.7g)

≡ 〈ϕ(
r − R0 − RA2

)|ϕ(
r − R0 − RA2 − di

)〉,
s1 ≡ 〈ϕ

(
r − R0 − RB1

)|ϕ(
r − R0 − RA2

)〉. (2.7h)

The diagonal terms εi denote the on-site energy of the electron at the carbon atom
in site i . In the first approximation, they are equal to the energy of an electron in the
2pz orbital of a carbon atom. This energy is modified as carbon atoms bond together
to form the lattice. However, in an ideal and charge-neutral bilayer, this on-site energy
is approximately the same for each site in the lattice. In this case, we can take it to be
zero and define our energy scale relatively to this point. More complicated situations
in which the symmetry between the atomic sites has been broken are discussed in
Sect. 2.2.3.

The parameters γ j describe the strength of the coupling between a specific pair of
carbon atoms. The constant γ0 denotes the coupling between the nearest neighbours
(A1↔ B1 and A2↔ B2). The parameter γ1 describes the direct interlayer coupling
A2↔ B1. The γ3 coupling represents the interlayer interaction between the nearest
A1 and B2 atoms, whereas γ4 characterizes the interlayer coupling between the
nearest A1 and A2, as well as B1 and B2 atoms. Naively, one could expect the
couplings γ3 and γ4 to be equal, especially with the assumptions made above about
couplings dependent only on the interatomic distance. However, with some insight
from the Slonczewski–Weiss–McClure model, we allow for γ3 and γ4 to be different.
Physically, this is the case because, as opposed to γ3, γ4 involves one of the atomic
sites creating the “dimer” (B1 and A2). The last coupling,γn , describes the interaction
of the in-plane next-nearest neighbours.

The overlap integrals sl take into account the fact that our π orbitals do not span
an orthogonal basis set. We only included here the overlap s0 between two nearest
neighbour atoms and the overlap s1 between the A2 and B1 sites where atoms are
directly above/below each other. Due to their small value, in most of the situations
under consideration in this thesis, even these two overlap integrals are neglected.

The electronic band structure resulting from Eq. (2.4) with the Hamiltonian and
overlap matrices Ĥ and Ŝ as in Eq. (2.6) is shown in Fig. 2.2. We see two conduction
and two valence bands. The lower conduction band and the upper valence band touch
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Γ Γ

Fig. 2.2 The band structure of bilayer graphene resulting from Eq. (2.4) with the Hamiltonian and
overlap matrices Ĥ and Ŝ as in Eq. (2.6) presented for high-symmetry directions in the Brillouin
zone as shown in Fig. 2.1b. The values of the parameters used are: γ0 = 3.1 eV, γ1 = 0.4 eV,
γ3 = 0.15 eV, γ4 = 0.1 eV, γn = 0.05 eV, s0 = 0.1, s1 = −0.05, εi = 0 for all i , and a = 2.46 Å.
The range of energies important in experimental setups modelled theoretically in this work is shown
on red background

exactly at the K point. The position of this touching point at the energy scale denotes
half-filling of the bands and is called the neutrality point. It is usually treated as the
zero of the energy scale. In the neutral structure with the valence bands completely
filled, the Fermi surface consists only of points. Any shift of the chemical potential
results in the creation of separate Fermi lines around each of the K points. Due to
this behaviour of the Fermi surface, the K points are often refered to as valleys. We
point out that for most experiments and potential applications, only the part of the
dispersion relatively close to the neutrality point (∼1 eV) is important and interesting.
Indeed, a proper description of this part of the band structure forms the basis for the
understanding and theoretical modelling of spectroscopic experiments presented in
this thesis. We will, therefore, investigate it in more detail in the following sections.

2.2.2 Approximation for Hopping Elements

We now want to look closer at the electronic dispersion for energies relevant to most
experiments, that is, the energies of up to∼1 eV from the neutrality point. This range
of energies is marked with red background in Fig. 2.2. For such energy, the relevant
regions in momentum space are the vicinities of the six corners of the Brillouin zone.
To describe electronic dispersion around a local minima at the K points, we shift the
coordinate system in reciprocal (momentum) space from the � point to the Kξ point.
We write the electron wave vector as k = K ξ + p

�
, where the electronic momentum

p is now measured from the centre of the valley Kξ . The geometrical factor f (k)
from Eq. (2.5), expanded up to the second order in p, reads

f (k) ≈ −
√

3a

2�

(
ξpx − i py

)+ a2

8�2

(
px + i py

)2
. (2.8)
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We introduce some new parameters, namely velocities v =
√

3aγ0
2�

, v3 =
√

3aγ3
2�

and

v4 = −
√

3aγ4
2�

, constant η = a2γ0
8�2 ≡ v2

6γ0
, as well as operators, π̂ = px + i py and

π̂
† = px − i py . We also neglect at this stage the overlap integrals s0 and s1, and

hence obtain only a unit matrix on the right hand side of Eq. (2.4). Our basis now
consists of 8 functionsφ p,ξ,i (r) (4 for each valley). However, for the cases considered
in this thesis, the valleys can be regarded as independent (we do not consider any
valley-connecting processes) and it is usually enough to explicitly write down only
the electronic Hamiltonian Ĥξ for one valley Kξ ,

Ĥξ = ξ

⎛

⎜⎜⎝

0 v3π̂ v4π̂
†
vπ̂

†

v3π̂
† 0 vπ̂ v4π̂

v4π̂ vπ̂
† 0 ξγ1

vπ̂ v4π̂
†
ξγ1 0

⎞

⎟⎟⎠− η

⎛

⎜⎜⎜⎜⎝

6γn
γ0

p2 v3
v
(π̂

†
)2 v4

v
π̂

2
π̂

2

v3
v

π̂
2 6γn

γ0
p2 (π̂

†
)2 v4

v
(π̂

†
)2

v4
v
(π̂

†
)2 π̂

2 6γn
γ0

p2 0

(π̂
†
)2 v4

v
π̂

2 0 6γn
γ0

p2

⎞

⎟⎟⎟⎟⎠
.

(2.9)
In the Hamiltonian above, we have for now neglected the on-site energies εi ,
which are discussed in detail in Sect. 2.2.3. The order of the basis functions is2

(φ+,A1, φ+,B2, φ+,A2, φ+,B1)
T in the K+ and (φ−,B2, φ−,A1, φ−,B1, φ−,A2)

T in the
K− valley.

The same Hamiltonian can be obtained using the ‘k · p’ approximation (see for
example [11, 12] for detailed derivation). In this scheme, as a basis set we use func-
tions φ̃ p,ξ,i (r) constructed from φk,i (r), Eq. (2.1), calculated exactly in the centre of
the valley Kξ and a plane wave envelope function which varies slowly at the distance
of the order of the lattice constant a [13, 14]:

φ̃ p,ξ,i (r) ≡ e
i
�

p·rφK ξ ,i (r) ≡
1√
N

e
i
�

p·r ∑

R0

ei K ξ ·(R0+Ri )ϕ
(
r − R0 − Ri

)
.

Comparing functions φ̃ p,ξ,i (r) and φK ξ+ p
�
,i (r), we can intuitively see why the

Hamiltonians in both approximations take the same form. Both functions take similar
values for r ≈ R0 − Ri , whereas in other regions the π orbital ϕ(r − R0 − Ri )

ensures that they both quickly decay, rendering the phase factors unimportant.
The electronic band structure resulting from the Hamiltonian (2.9) is shown for

both valleys in Fig. 2.3 for the energy range 3.5γ1 away from the neutrality point. On
this scale, all bands look approximately parabolic very close to the center of the valley
and linear further away. The former is not exactly true for the bands shown in yellow
(later referred to as the low-energy bands), as shown in Sect. 2.3. The bands marked
in red (in what follows called the high-energy or split bands) are shifted away from
the neutrality point by approximately the interlayer coupling, γ1 ∼ 0.4 eV [15–23]
in each direction. The velocity v ∼ 106 m/s [18–20, 23] determines the slope of the

2 For brevity, we omit the momentum index p and explicit dependence of the basis functions φ p,ξ,i
on r .
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/ 1
/ 1

(a) (b)

Fig. 2.3 The band structure of bilayer graphene in the vicinity of both (a) K− and (b) K+ valleys,
obtained within the linear approximation, Eq. (2.9). The values of the parameters used are: γ0 =
3.1 eV, γ1 = 0.4 eV, γ3 = 0.2 eV, γ4 = 0.1 eV, γn = 0.1 eV, a = 2.46 Å. No on-site asymmetries
are included (that is, εi = 0 for all i). For both valleys, the low-energy and high-energy bands are
shown in yellow and red, respectively

linear parts of the bands. The isoenergetic lines create circles, which in the case of
the low-energy bands are trigonally warped. This warping is the effect of the velocity
v3 ∼ 0.1v [20, 23] as well as terms quadratic in the momentum p. The remaining
velocity, v4, breaks the electron-hole symmetry. It renormalizes somewhat the slopes
of the linear parts and its effect is opposite in the conduction and valence bands. The
next-nearest neighbour coupling γn also breaks the electron-hole symmetry. The
parameters v, γ1 and v3 are the most important in the description of the electronic
dispersion around the valleys. At low energies, the deviation from the electron-hole
symmetric situation is negligible for most cases. Also, it is difficult to experimentally
separate the contributions of γ4, γn or even s0 to the electron-hole asymmetry.

2.2.3 Symmetry-Breaking Asymmetries in the on-Site Energies

Up to this point, we considered the kinetic energies of electrons on different atomic
sites (the terms εi in Eq. 2.7a) to be equal. In other words, all the carbon atoms
in the lattice were chemically equivalent. However, that is obviously not the case
as the environment of the dimer atoms, B1 and A2, is definitely different than the
surroundings of the atoms A1 and B2. In general, three parameters are needed to
account for differences between our four atomic sites. The (not unique) definitions
we use here are:

AB = 1

2
[(εA1 + εA2)− (εB1 + εB2)]; (2.10a)

 = 1

2
[(εA1 + εB2)− (εB1 + εA2)]; (2.10b)

u = 1

2
[(εA1 + εB1)− (εA2 + εB2)]; (2.10c)
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| |

| |

| |

| |

u

| |

| |

(a) (b) (c)

Fig. 2.4 Cuts through the electronic dispersion around the K+ valley along the px axis in the
presence of (a)  = 0.2 eV, (b) AB = 0.2 eV, (c) u = 0.2 eV. For illustrative purposes, we use
large values of asymmetries. In reality, only the interlayer asymmetry u can be of the order of
100 meV [25, 26]. The values of other parameters used are: γ0 = 3 eV, γ1 = 0.35 eV, γ3 = 0.15 eV,
γ4, γn = 0 eV, a = 2.46 Å. Figure reprinted from Ref. [27], Copyright (2010), with permission
from IOP Publishing

εA1 = 1

2
(u ++AB); εB1 = 1

2
(u −−AB); (2.10d)

εA2 = 1

2
(−u −+AB); εB2 = 1

2
(−u +−AB); (2.10e)

Then, AB describes the difference between on-site energies of A and B sublattice
sites on each layer. We call it intralayer asymmetry. It may be influenced, especially
in the bottom layer, by the underlying substrate. The next parameter,, accounts for
an energy difference between dimer and non-dimer sites. Finally, u characterizes the
interlayer asymmetry between the two layers. This asymmetry can be significantly
changed by doping the sample [15] or even continously varied with external gates
[24]. This effect is discussed in more depth in Sect. 4.3.1. To show the influence of
each of the asymmetries on the band structure, we add them separately to the tight-
binding model and plot in Fig. 2.4 cuts through the electronic dispersion around
the K+ point along the px axis. The intralayer asymmetry does not open any gaps
in the electronic spectrum but breaks the electron-hole symmetry. The dimer/non-
dimer asymmetry AB opens a gap and preserves the electron-hole symmetry. The
interlayer asymmetry u preserves the electron-hole symmetry and also leads to the
opening of a gap in the spectrum. However, we point out the characteristic ‘Mexican-
hat-like’ features in the shape of the low-energy bands in the vicinity of the gap which
appear due to u (Fig. 2.4c).

http://dx.doi.org/10.1007/978-3-642-30936-6_4
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2.3 The Effective Two-Band Model

In this section, we derive an effective low-energy Hamiltonian describing the two
degenerate bands in the close vicinity of the valley Kξ . This analysis was first per-
formed by McCann and Fal’ko [28] and proved extremely useful in describing the
low-energy properties of bilayer graphene (see for example Refs. [28–33]). For a
detailed discussion of this effective two-band approximation, see Refs. [27, 34]. For
simplicity, we take as the starting point the eigenproblem for the Hamiltonian in
linear approximation, Eq. (2.9), containing only the most important parameters v,
γ1 and v3, and terms up to linear in the momentum p. We also introduce the Pauli
matrices σx , σy and σz , and write the eigenproblem for the Hamiltonian as

(
ξv3(σx px − σy py) ξv(σ · p)

ξv(σ · p) σxγ1

) (
ψ1
ψ2

)
= ε

(
ψ1
ψ2

)
, (2.11)

where ψ1 and ψ2 denote two-component vectors which form together the four-
component electronic eigenstate ψ j from (2.4). Let us use the second row of (2.11)
to express ψ2 in terms of ψ1 and ε and substitute it into the first row to obtain,

ξv3
(
σx px − σy py

)
ψ1 + v2 (σ · p) [ε − σxγ1]−1 (σ · p) ψ1 = εψ1.

For low energies, ε 
 γ1, we get [ε − σxγ1]−1 ≈ −σx
γ1

and

{
−v

2

γ1

[
σx

(
p2

x − p2
y

)
+ 2σy px py

]
+ ξv3

(
σx px − σy py

)}
ψ1

≡ Ĥeffψ1 = εψ1. (2.12)

The above effective Hamiltonian describes the electronic dispersion for energies
close to the neutrality point while neglecting the split bands. The basis of Ĥeff is
(φ+,A1, φ+,B2)

T at the K+ and (φ−,B2, φ−,A1)
T at the K− valley. The resulting

electronic dispersion,

εξ = ±
[(

v2

γ1

)2

p4 + v2
3 p2 − 2ξv2v3

γ1
p3 cos 3ϕ

] 1
2

, (2.13)

where p2 = p2
x + p2

y and arctan ϕ = py
px

, is shown in Fig. 2.5a. The trig-
onally warped isoenergetic line undergoes a splitting into four pockets at the
energy εLT = ± γ1

4

(
v3
v

)2, |εLT| ∼ 1 meV (a so called Lifshitz transition [35]), see
Fig. 2.5b. However, characteristic values for this transition energy εLT and momen-
tum pLT ∼ γ1v3

v2 are below the resolution of any of spectroscopies considered in the
following chapters. Hence, the only importance of v3 for our considerations is its
role as the main source of trigonal warping for the isoenergetic lines at low energies.
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(a) (b) (c)

Fig. 2.5 a The electronic dispersion of bilayer graphene at very low energies ε ∼ 1 meV around
the valley K+. The blue contour represents the isoenergetic line at the Lifshitz transition energy
εLT = ± γ1

4

(
v3
v

)2. b The isoenergetic lines around the valley K+ for energies εLT/2 (green solid
line), εLT (blue solid line) and 2εLT (red solid line). Also shown are the isoenergetic line at the
energy 10 meV from the neutrality point (black solid line) and its shape if the trigonal warping due
to v3 is neglected (black dashed line). c The density of states given by Eq. (2.13) for v3 = 0.1v
(dashed line) and v3 = 0 (solid line). The latter corresponds to a purely parabolic bottom of the
band

For these energies, trigonal warping does not significantly affect the density of states
(DOS), as shown in Fig. 2.5c, where the comparison between the density of states of
a purely parabolic band in the case of v3 = 0 (black solid line) and of the electronic
dispersion given by Eq. (2.13) (black dashed line), is shown. The peak in the DOS
corresponds to the Lifshitz transition. However, for energies ε > 5 meV the den-
sity of states already closely follows constant density of states for a parabolic band,
although the isoenergetic lines may still be significantly noncircular (Fig. 2.5b).

The procedure applied above to obtain the low-energy description of electrons
can be easily generalised to include all other terms appearing in the four-band
Hamiltonian in linear approximation, Eq. (2.9), as well as the on-site asymmetries
from Sect. 2.2.3. We then obtain [27]

Ĥeff = Ĥ0 + ĥw + ĥ4 + ĥn + ĥu + ĥ + ĥAB, (2.14a)

where

Ĥ0 = −v
2

γ1

[
σx

(
p2

x − p2
y

)
+ 2σy px py

]
; (2.14b)

ĥw = ξv3
(
σx px − σy py

)− ηv3

v

[
σx

(
p2

x − p2
y

)
+ 2σy px py

]
; (2.14c)

ĥ4 = 2
γ4v

2

γ0γ1
p2; (2.14d)

ĥn = −γnv
2

γ 2
0

p2; (2.14e)
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ĥu = ξu

(
1

2
− v2

γ 2
1

p2

)
σz; (2.14f)

ĥ = 
(

1

2
− v2

γ 2
1

p2

)
; (2.14g)

ĥAB = ξ AB

2
σz . (2.14h)
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Chapter 3
Angle-Resolved Photoemission Spectroscopy

The angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental
tool based on the photoelectric effect, first observed by Hertz more than 120 years
ago [1] and explained by Einstein at the beginning of the previous century with the
help of the then novel idea of photons, quanta of electromagnetic radiation [2]. In
the photoelectric effect, absorption of a sufficiently energetic incident photon with
energyω ejects an electron with the initial energy ε p corresponding to the momentum
p = �k from the sample into the vacuum. In ARPES, such ejected electrons (called
photoelectrons) with kinetic energy εe are detected with the help of a hemispherical
detectors, so that both their energy and momentum pe can be identified. The modulus
of the latter is given by pe = √2meεe (me is the electron mass), while its components,

(pe)x =
√

2meεe cosφ sin θ;
(pe)y =

√
2meεe sin φ sin θ;

p⊥e =
√

2meεe cos θ; (3.1)

where φ and θ are the azimuthal and polar angles of detection, respectively. Knowl-
edge of electronic states in the sample is gained with the help of two conservation
laws: (I) conservation of the energy in the whole process puts a constraint on ε p,
while (II) conservation of the in-plane-momentum resulting from in-plane crystallic
periodicity yields some information about the electron momentum in the crystal, p.
For bulk materials, the angular distributions of measured photoelectrons as a function
of ε p are difficult to analyse, due to the lack of sufficient restraint on the out-of-plane
component of p. For layered or (quasi-)two-dimensional systems, however, as long
as the incident radiation is monochromatic, those distributions represent direct con-
nection to the constant-energy contours of the band structure of the material.

Because of its layered nature, graphite has been an object of extensive ARPES
studies in the past [3–9]. Poor angular and energy resolutions resulted in little data
concerning the π bands in the vicinity of the K points, although significant variation
in the intensity from states on the same isoenergetic line has been noticed [8, 9].
Much more sophisticated equipment was available at the moment when monolayer
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24 3 Angle-Resolved Photoemission Spectroscopy

graphene was isolated. Hence, ARPES was the method of choice for numerous
investigations of the electronic band structure of two-dimensional graphene systems.
It has been used to examine the epitaxial growth and confirm the graphene-like
linear dispersion relation for electrons in carbon layers on SiC [10, 11], Ni [12–15],
Ir [16] or Ru [17]. At the same time, high resolution allowed detailed examination
of the deviations from this linearity [18–21], which stimulated numerous theoretical
considerations of the band renormalisation due to many-body interactions [22–27]
and some controversy on the possibility of the substrate-induced sublattice symmetry
breaking in the monolayer grown on SiC [21, 28–30]. ARPES has been used to show
for the first time, the appearance of the electric-field-induced gap in the spectrum of
bilayer graphene [31]. In the same work, the magnitude of the interlayer coupling
γ1 has been extracted. It has been further employed to investigate the effects of
molecular doping of monolayer and bilayer graphene [32, 33]. The ARPES studies
have been then extended to tri- and fourlayer graphene systems [34]. Review of the
photoemission studies of graphene systems grown on SiC can be found in Refs.
[35, 36].

In this chapter, we aim to describe the angular distribution of the angle-resolved
photoemission spectroscopy intensity patterns for bilayer graphene. We first intro-
duce a simple theoretical model of the photoemission process, based on the idea of
multiple-source interference of electronic Bloch waves. More detailed reviews of the
theoretical background of ARPES can be found, for example, in Refs. [37, 38]. We
then use our model to obtain low-energy angular distributions of ARPES intensity
for monolayer graphene and demonstrate that they are a manifestation of what has
been recently branded as electronic chirality and what is common to all graphene-
layered systems, including graphite [9, 39]. Afterwards, we show that for bilayer
graphene specifically, the anisotropy of the constant-energy maps may be used to
extract information about the magnitude and sign of interlayer coupling parameters
and about symmetry breaking inflicted on a bilayer by the underlying substrate. Our
investigation was first published in Ref. [40].

3.1 ARPES as Quantum Young’s Experiment

We consider here the following photoemission process: an incoming photon with
energy ω > W , where W is the work function of the material, is absorbed by an
electron in the momentum state k with energy εk. This electron receives thus, enough
energy to overcome the energetic barrier, described by the work function W , and leave
the material. It is then detected as having energy εe and momentum pe, connected
by Eq. 3.1. The energy conservation in the whole process can be expressed as

ω + εk = W + εe. (3.2)

We treat the electron leaving the material as a simple case of a wave passing a
potential step. It follows then from the periodicity of the sample in the plane, that
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the in-plane component of the momentum is conserved,

� (k + G) = p‖e, (3.3)

where p = �k, G = m1b1+m2b2 is the reciprocal lattice vector and we choose the
z axis to correspond to the direction perpendicular to the plane of our sample and
( p‖e)2 =

√
p2

e − ( p⊥e )2; p⊥e = (0, 0, p⊥e ).
The ARPES intensity is proportional to the modulus square of the transition

amplitude between the initial and final states of system under the perturbation caused
by incoming radiation. We treat the latter with the perturbative Hamiltonian

Ĥ int = − e

2me

(
A· p̂+ p̂·A) = − e

me
A· p̂, (3.4)

where A is the electromagnetic vector potential of the incoming radiation and p̂
is the electron momentum operator. We neglect many-body interactions and as the
initial state take the single-electron Bloch wave state in the general form, Eq. (2.2),

�(r) =
∑

i

Ciφk,i (r), (3.5)

where we have for now dropped the index j and consider a single band. As for the
final state of the electron, �e(r), we approximate it with a plane wave,

�e(r) ∝ exp

(
i

�
pe ·r

)
. (3.6)

We are interested in the angular distribution of ARPES probing the low-energy
electronic states in the vicinity of the valleys, not the absolute value of the intensity.
Hence, neglecting prefactors not contributing to the angle-dependence, we express
the ARPES intensity from electron states in a given band as

I ∝
∣∣∣∣∣∣
〈e i

�
pe·r |A· p|

∑

i,R0

Ci e
i k·(R0+Ri )ϕ(r − R0 − Ri )〉

∣∣∣∣∣∣

2

× δ
(
εe +W − ε p − ω

)
. (3.7)

At the same time, we expect the patterns to reflect the shape of the isoenergetic lines
around the valleys. The radius of the area in the reciprocal space around a single valley
important for our considerations is less than ten per cent of the �−K distance. Also,
the shapes of the patterns for a specific energy should resemble trigonally warped
circles with all important angle-dependent features contained within a narrow ring
in the reciprocal (or momentum) space. We assume, that for this narrow range of
momenta, the result of the perturbation operator A· p̂ acting on the initial state is a

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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smooth, slowly varying function of momentum and approximate it with an irrelevant
constant. This assumption is justified, as the energy of incoming photons used in
experiments is of the order of 50–150 eV [11, 17, 21, 28, 31, 34, 35] translating
into the lower bound on the photon’s wavelength λ � 5nm, corresponding to about
twenty lattice constants. This means that the incoming electromagnetic wave does
not distinguish details of the electron Bloch state (for example the structure of the
atomic 2pz orbital). Therefore, the intensity I can be related to

I ∝
∣∣∣∣∣∣

∑

i

Ci e
i
�
( p− pe)·Ri

∑

R0

e
i
�
( p− pe)·R0〈e i

�
pe·r ′ |ϕ(r ′)〉

∣∣∣∣∣∣

2

δ
(
εe +W − ε p − ω

)
,

where we introduced new position vector r ′ = r − R0 − Ri . The sum over the two-
dimensional lattice vectors R0 of the phase factors leads to the Dirac delta expressing
conservation of the in-plane momentum, Eq. 3.3. The integral over r ′ is the Fourier
image of the atomic 2pz orbital ϕ(r ′), which we denote by ϕ( pe). We obtain

I ∝ |ϕ( pe)|2
∣∣∣∣∣
∑

i

Ci e
−i G·Ri e−

i
�

p⊥e ·Ri

∣∣∣∣∣

2

δ
(
εe +W − ε p − ω

)
. (3.8)

Let us now consider the Fourier transform ϕ( pe) as a function written in spherical
coordinates, ϕ( pe) ≡ ϕ (pe, φ, θ). Just like the 2pz orbital in the real space, its
Fourier transform ϕ( pe) has rotational symmetry in the px − py plane and does
not depend on the azimuthal angle φ. For a given energy of the incoming photons
ω and material specific work function W , to resolve the constant-energy maps of
the ARPES intensity for energy ε p, one only needs to look at photoelectrons with
well specified energy εe = ω−W + ε p and thus the modulus of the momentum pe.
Finally, as we concentrate on a small area in the momentum space around the valleys,
the resulting change in the polar angle θ is going to be small. For the momentum
states under consideration, ϕ( pe) is essentially a constant. Therefore, we neglect the

prefactor
∣∣ϕ( pe)

∣∣2. We will also first treat the lattice as strictly two-dimensional,

which means that e− i
�

p⊥e ·Ri = 1. We end with the expression

I ∝
∣∣∣∣∣
∑

i

Ci e
−i G·Ri

∣∣∣∣∣

2

δ(εe +W − εk − ω) . (3.9)

In the formula above, the ARPES intensity pattern arises as a result of the inter-
ference of the photoelectron waves originating from all atomic sites within the unit
cell. The contribution of the i-th site is given by the amplitude on that i-th site of
the electronic Bloch wave function corresponding to the initial state with energy
εk. These amplitudes are simply the coefficients of the eigenstates for the tight-
binding Hamiltonians, as is evident from Eqs. (2.2) and (2.4). The exponential factors
exp (−i G · Ri ) take into account the in-plane difference in optical paths between

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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electron waves originating on different sites and travelling towards the detector.
Hence, in this simplified description, ARPES patterns correspond to a electron-wave
version of quantum Young’s double-slit experiment [41]. The number of sources
equals in this case the number of atoms in the unit cell. Conservation of the in-plane
momentum maps directly the ARPES pattern of the photoelectron momentum to the
constant-energy cuts through the band structure of our material, while conservation
of energy defines the total wavevector (k + G) observable in the experiment. The
greater the energy of the incoming photons, the more Brillouin zones can be resolved.
Finally, we do not model here dynamical effects that lead to energy broadening
[18, 22–27] but introduce a Lorentzian δ(· · · ) ≈ π−1�/[(· · · )2 +�2] in the figures
with the parameter � representing finite energy broadening.

3.2 Monolayer Graphene

To derive the angular distributions of the ARPES intensity for monolayer graphene,
we use the tight-binding Hamiltonian, which can be obtained in a procedure very
similar to that presented for bilayer graphene in Chap. 2. Considering only one layer
of hexagonally arranged carbon atoms (for example the bottom one in Fig. 2.1), one
ends with the same unit vectors, unit cell and Brillouin zone. However, the unit cell
now contains only two atoms, A and B, with their positions within the unit cell
given as RA = −d1 and RB = 0, respectively. Within the linear approximation, the
Hamiltonian of monolayer graphene in the basis (φ+,A, φ+,B)T or (φ−,B, φ−,A)T
depending on the valley, is [42–44]

Ĥ1l = ξv
(

0 π̂
†

π̂ 0

)
. (3.10)

From this follow the energy eigenvalue ε p and corresponding eigenstates ψ p,

ε p = svp, ψ p = 1√
2

(
e−i ϕ2

ξsei ϕ2

)
, (3.11)

where ϕ = arctan py
px

and s = ±1 denotes the conduction (s = 1) or the valence
(s = −1) band. Both the conduction and valence bands have linear dispersion. They
touch each other exactly in the center of the valley at the energy εD usually taken as
zero of the energy scale. This characteristic feature leads to the K points often being
called the Dirac points [45–47]. With the use of Eq. (3.9), the angular distribution of
ARPES for monolayer graphene is related to

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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I ∝ 1

2

∣∣∣e−i ϕ2 e−i ξ2 G·d1 + ξsei ϕ2 ei ξ2 G·d1

∣∣∣
2

(3.12)

= 1+ ξs cos

[
ϕ − ξ 2π

3
(m2 − m1)

]
.

The two real numbers, m1 and m2, define which Brillouin zone the ARPES spectrum
is described for. However, as the vicinity of any valley belongs formally to one of the
three neighbouring Brillouin zones (due to the K point being a corner of a hexagon),
for further simplicity of our discussion, we choose different unit cell in the reciprocal
space, that is, a rhombus centred on the � point, as shown in Fig. 2.1b. This choice
does not influence any of the formulae in this chapter, yet simplifies the problem of
choosing the numbers m1 and m2 as the vicinity of any K point is now contained in
a single unit cell. For the two representative valleys K+ and K−, Eq. (3.12) can now
be put in the simple form

I ∝
{

cos2
[
ϕ
2 − ξ π3 (m2 − m1)

]
for ξs = 1

sin2
[
ϕ
2 − ξ π3 (m2 − m1)

]
for ξs = −1

. (3.13)

We see that as the path around the valley is traversed and the angleϕ changes, one peak
in the intensity is observed, at the angle

[
ϕ = ξ 2π

3 (m2 − m1)mod 2π
]

if ξs = 1 or[
ϕ = π + ξ 2π

3 (m2 − m1)mod 2π
]

if ξs = −1. The ARPES patterns probing states
at the same energy ε p differ between the valleys. However, the angular distribution
around the valley K+ for the valence band is the same as the angular distribution
around the valley K− for the conduction band. The same is true for patterns around
K+ for the conduction band and K− for the valence band.

Numerically calculated ARPES patterns for monolayer graphene within the gen-
eral tight-binding model, that is the band structure described as

(
0 −γ0 f (k)

−γ0 f ∗(k) 0

)
ψ( p) = ε p

(
1 s0 f (k)

s0 f ∗(k) 1

)
ψ( p), (3.14)

are shown in Fig. 3.1. Although due to additional terms in the electronic momentum
p contained in the geometrical factor f , the eigenstate can no longer be written
down in a simple form containing the azimuthal angle ϕ, the above conclusions still
hold. As a particular valley is circled round, the ARPES intensity exhibits one peak
(intensity is at maximum) and one dip (intensity is zero). Due to those higher terms
in p, for energies far from the Dirac point (Fig. 3.1a) the pattern around each valley
is trigonally warped. However, for energies close to the Dirac point (Fig. 3.1b–e), the
isoenergetic lines are circular and the electron-hole asymmetry is negligible. Thus,
the pattern around the valley K+ (K−) for the valence band is the same as around
the valley K− (K+) for the conduction band.

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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(a) (b) (d)

(e)(c)

Fig. 3.1 The constant-energy ARPES maps of monolayer graphene obtained within the full tight-
binding model, Eq. 3.14, for (a) whole Brillouin zone; (b) and (c) valley K+; (d) and (e) valley
K−. Energy corresponding to each map is given with respect to the Dirac point. The length of the
side of the map in the reciprocal space is 10π

3a and 8π
75a for (a) and (b)–(e), respectively. Numerical

values of the parameters used: γ0 = 3 eV, s0 = 0.129, a = 2.46 Å

The peculiar behaviour of the ARPES intensity as a function of the azimuthal angle
ϕ around the valley Kξ has been noticed before for bulk graphite [9]. As shown, its
origins lie purely in the hexagonal symmetry of graphene. This symmetry gives rise
to a specific phase relation between components of the electron wave on the two
sublattices and the electron’s momentum. In recent literature, this is often referred
to as chirali t y of electrons in graphene [45–48]. The angle-resolved photoemission
provides thus a direct observation of this phenomenon.

3.3 Bilayer Graphene

As explained in the previous section, the main features in the angular distribution
of the ARPES intensity for graphene have been in the past observed for graphite.
As graphene and graphite are conceptually the extreme cases of hexagonally layered
carbon system, one might expect no significant differences in the ARPES spectra
for systems in between, that is also for bilayer graphene. However, the low-energy
electronic spectrum undergoes a drastic change from linear to quadratic dispersion
when two graphene layers are coupled together to form a bilayer. The question is
therefore, whether this change leads to new features in the angular distribution of the
ARPES intensity.
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(a) (b)

Fig. 3.2 The constant-energy ARPES maps of bilayer graphene obtained within the low-energy
two-band approximation, Eq. 3.14, for energies (a) ε = −0.1 eV, (b) ε = 0.1 eV with respect to the
neutrality point. The length of the side of the map in the reciprocal space is 4π

15a , numerical values
of the parameters used: v = 0.97 m/s, γ1 = 0.4 eV

3.3.1 Low-Energy Spectrum: Contribution of the Two Degenerate
Bands Only

As we are concerned with the low-energy electronic properties, we start with the
effective two-band approximation, Eq. (2.12). For simplicity of the arguments that
follow, we neglect the v3 terms and write the eigenproblem

− v
2

γ1

⎛

⎝ 0
(
π̂

†
)2

π̂
2 0

⎞

⎠ψ = εψ. (3.15)

We write the resulting spectrum and electronic eigenstates as follows:

ε p = s
v2

γ1
p2; ψ = 1√

2

(
e−iϕ

−seiϕ

)
, (3.16)

where s, as before, swaps between the conduction (s = 1) and valence (s = −1)
bands and ϕ = arctan py

px
. The eigenstates above are very similar to those in the case

of the monolayer, Eq. (3.11), although the prefactor 1
2 in front of the angle ϕ and

valley index ξ are missing. From Eq. (3.9), the ARPES intensity is

I ∝
{

cos2
[
ϕ + ξ 2π

3 (m2 − m1)
]

for s = −1
sin2

[
ϕ + ξ 2π

3 (m2 − m1)
]

for s = 1
. (3.17)

Comparison between (3.17) and (3.13 shows that for bilayer graphene the angular
distribution of the ARPES intensity around a valley should depends on twice the
characteristic angle obtained for monolayer,

[
ϕ
2 − π

3 (m2 − m1)
]
. Therefore, two

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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symmetric peaks and two dips in the intensity are expected at low energies as the
path around the valley is traversed. That is shown in the Fig. 3.2. No difference (except
possibly trigonal warping effects) should occur when changing the valley from K+
to K−. Also, a rotation by π/2 should occur when swapping the band.

3.3.2 Contribution from the Split Bands

In the previous section we described the ARPES spectra in the low-energy limit.
At the same time, the ARPES pattern should evolve so that at higher energies it
resembles that of monolayer graphene or graphite, Fig. 3.1a, with one peak in the
intensity. Such a regime can not be described with the low energy approximation.
We move therefore to the four-band Hamiltonian, which not only enables us better
comparison to experimental data, but also, as it turns out, adds to the low-energy
description from the previous section [40]. Again, for the sake of the argument,
we start with the minimum model describing all four bands around the valley Kξ ,
that is, ⎛

⎜⎜⎝

0 0 0 ξvπ†

0 0 ξvπ 0
0 ξvπ† 0 γ1
ξvπ 0 γ1 0

⎞

⎟⎟⎠ψ = εψ. (3.18)

Once again, we require the knowledge of the eigenstates and the energies,

εsb = s
1

2

(√
γ 2

1 + 4v2 p2 + bγ1

)
, ψsb = 1

√
2

√
1+

( |εsb|
vp

)2

⎛

⎜⎜⎜⎝

e−iϕ

sbeiϕ

ξb |εsb|
vp

ξs |εsb|
vp

⎞

⎟⎟⎟⎠ ,

(3.19)
where b = ±1 distinguishes between the split and the low-energy bands. Note that
what b (1 or −1) corresponds to which set of bands depends on the sign of γ1. This
does not matter for the band structure (does not change the form of the eigenvalues,
only reorders them), but does influence the form of the eigenstate corresponding to
each band. The angular distribution of the ARPES intensity is proportional to

I ∝
(

1+ sb cos

[
2ϕ + ξ 4π

3
(m2 − m1)

]

+ 2δsb

( |εbs |
vp

){ |εbs |
vp
+ (b + s) cos

[
ϕ + ξ 2π

3
(m2 − m1)

]})
. (3.20)

The first two terms correspond to the low energy limit discussed in the previous
section. The last term is then a correction, which vanishes for sb = −1. In this
case one is left with the pattern of two symmetric peaks, as in Fig. 3.2. However,
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this happens for only one of the two low-energy bands (and one high-energy band).
For the other, sb = 1, the correction does not vanish and contributes towards the
intensity. To estimate its importance, we consider valleys K± = (± 4π

3a , 0) in the first

Brillouin zone (m1,m2 = 0). Also, for the low energy bands, |ε| ≈ v2

γ1
p2. Then,

I ∝
(

1+ cos (2ϕ)+ 4s

√
|εsb|
γ1

cosϕ + 2
|εsb|
γ1

)
.

This function has two maxima for ϕ ∈ (0, 2π), at ϕ = 0 and ϕ = π . The ratio of
their intensities is

I (ϕ = 0)

I (ϕ = π) =
⎛

⎝
1+ s

√ |ε|
γ1

1− s
√ |ε|
γ1

⎞

⎠
2

.

For the energy |εsb| = 0.025 eV from the neutrality point, the above ratio yields 25
9

for s = 1 or 9
25 for s = −1. Hence, one of the peaks is more than twice higher

than the other. That strong asymmetry is obtained for energies of the order of γ1
16 ,

which are often considered to be in all instances well described by the two-band
approximation.

To summarise, according to Eq. (3.20), we expect the symmetric two-peak pattern
to appear for two of the bands. For γ1 > 0, these are the valence split band (s = −1,
b = 1) and the conduction low-energy band (s = 1, b = −1). For the other two
bands, we expect one of the peaks to go darker as we increase the distance from the
neutrality point. From the band structure considerations, Eq. (2.9), we also expect
the pattern to be strongly trigonally warped at low energies due to the coupling γ3.
This low-energy warping does not occur in the monolayer case.

The constant-energy maps of the ARPES intensity, calculated within the full four-
band model, Eq. (2.4) and (2.6), are presented in Fig. 3.3 for the whole Brillouin zone,
(a), and valley K+, (b)–(g). As anticipated, for the energy far from the neutrality
point, Fig. 3.3a, the ARPES spectrum look similar to that of the monolayer, 3.1a
and graphite [9, 39]. Figures 3.3b–g show the evolution of the ARPES pattern as
the energy changes from 0.5 to −0.5 eV. At energies greater than the interlayer
coupling, ε > γ1, (b) and (c), there are two ring-like patterns, each corresponding to
photoemission from states in two bands, whereas, for low-energies, ε < γ1, (d)–(g),
there is a single ring corresponding to emission from the degenerate band only. The
dot in the center of Fig. 3.3d corresponds to the photoemission from the bottom of
the split band due to finite energy width �. The disappearance of this dot provides
an estimate for the magnitude of the parameter γ1 [31]. It is not visible on Fig. 3.3e,
because for this band sb = −1. As mentioned before, the sign of γ1 determines for
which set of bands the pattern of two equally bright peaks should be observed. In
agreement with the conclusions from Eq. 3.20, in the Fig. 3.3b–g these symmetric
peaks are observed for the low-energy conduction and high-energy valence bands
as γ1 was taken to be positive. Negative sign of γ1 would lead to equally bright

http://dx.doi.org/10.1007/978-3-642-30936-6_2
http://dx.doi.org/10.1007/978-3-642-30936-6_2
http://dx.doi.org/10.1007/978-3-642-30936-6_2
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(a) (b)

(d)

(f)

(e)

(g)

(c)

Fig. 3.3 The constant-energy ARPES maps of bilayer graphene obtained within the four-band
tight-binding model, Eq. (2.4) and (2.6). All energies are given with respect to the neutrality point.
The length of the side of the map in the reciprocal space is (a) 16π

5a , (b)–(g) 4π
15a . Numerical values

of the parameters used: γ0 = 3 eV, a = 2.46 Å (resulting v ≈ 0.97 m/s), γ1 = 0.4 eV, γ3 = 0.2 eV,
s0 = 0.129, and the energy width � is one sixth of the corresponding energy

peaks appearing in the high-energy conduction and low-energy valence bands. Hence,
probing the electron wave function via ARPES may reveal not only the magnitude
of the coupling but also its sign. We emphasize that this sign is not important when
the tight-binding model is used only to obtain the band structure and comparisons
to experimentally obtained electronic dispersions relate only to the magnitude of the
band splittings which are always positive. Also, notice the second peak evolving in
the pattern originating from the low-energy valence band at ϕ = 0 as the energy
shifts closer to the neutrality point. It is not visible at all at the energy ε = −0.5eV,
but is quite clear for ε = −0.1 eV, where, in agreement to the above discussion, it is
less than half of the dominant peak around ϕ = π .

As mentioned above, the sign of the γ1 coupling may be extracted from the ARPES
spectra. We now show that knowledge of this sign allows for the determination of the
sign of the trigonal warping parameter, γ3. Let us recall the low energy dispersion
around the valley Kξ as described by the two-band approximation, Eq. (2.13),

http://dx.doi.org/10.1007/978-3-642-30936-6_2
http://dx.doi.org/10.1007/978-3-642-30936-6_2
http://dx.doi.org/10.1007/978-3-642-30936-6_2
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3 3< 3 3

Fig. 3.4 The influence of the signs of γ1 and γ3 on the ARPES spectra for the energy ε = −0.1 eV
with respect to the neutrality point. The length of the side of the map in the reciprocal space is
4π
30a . Numerical values of the parameters used: γ0 = 3 eV, a = 2.46 Å (resulting v ≈ 0.97 m/s),
|γ1| = 0.4 eV, |γ3| = 0.2 eV, s0 = 0.129, and the energy width � = 0.1/6 eV

εξ = s

[(
v2

γ1

)2

p4 + v2
3 p2 − 2ξv2v3

γ1
p3 cos 3ϕ

] 1
2

. (3.21)

This expression illustrates that the angular dependent factor, which produces trigonal
warping, depends on the sign of the ratio γ3/γ1. Once one of the signs is set, the
other follows from investigation of the shape of the ARPES patterns at low energies.
This is presented in Fig. 3.4, where the comparison between patterns at the energy
−0.5 eV for different signs of γ1 and γ3 is shown. For sgnγ1 = sgnγ3, the trigonal
warping due to γ3 deforms the isoenergetic lines in the same fashion as the high-
energy trigonal warping due to higher than linear terms in the electronic momentum
in the factor f (k) [Fig. 3.4a, d; compare to Fig. 3.3a]. However, for sgnγ1 = −sgnγ3,
the low-energy warping counteracts the effects of the high-energy warping [Fig. 3.4b,
c]. Once the sign of γ1 has been established, the direction of the low-energy warping
along the px axis [compare Fig. 3.4a, b or c, d] determines the sign of γ3.

3.3.3 Influence of the Symmetry-Breaking Parameters
on the ARPES Spectra

The angular distributions of the ARPES intensity are also sensitive to the symmetry-
breaking parameters u, � and �AB . There are two reasons for that: (I) all of these
parameters, as shown in Sect. 2.2.3, modify the band structure, thus changing the
shape of the isoenergetic lines in the reciprocal space probed with ARPES; (II) these
parameters also influence the amplitude Ci of the electron Bloch wave on the atomic
site i . The influence of the on-site asymmetries on the ARPES spectra is shown on the
example of the interlayer asymmetry u in Fig. 3.5. Four spectra around the K+ valley
for different values of the asymmetry are presented, as well as the corresponding
low-energy band structures (beneath each ARPES spectrum). The two-peak pattern
is quite robust against the opening of a gap. Only when the top/bottom of the gap is
near the probed energy, the pattern is distorted (last column in Fig. 3.5). The opening

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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Fig. 3.5 The influence of the interlayer asymmetry u on the ARPES spectra for energy ε = 0.1 eV
with respect to the neutrality point. The length of the side of the map in the reciprocal space is 8π

75a .
Shown below the spectra are corresponding electronic dispersions along the Px axis; the dotted
lines show the position of the neutrality point (the middle of the gap) and the dashed lines show the
energy the spectra are resolved for. Numerical values of the parameters used: γ0 = 3 eV, a = 2.46 Å
(resulting v ≈ 0.97 m/s), γ1 = 0.4 eV, γ3 = 0.2 eV, s0 = 0.129, and the energy width� = 0.1/3 eV

of the gap in the electronic spectrum due to the interlayer asymmetry u has already
been successfully observed with ARPES [31].

3.3.4 Interference Due to a Finite Interlayer Distance

Up to this point, we treated bilayer graphene as purely two-dimensional and disre-
garded the existence of the interlayer spacing between layers, c0. Clearly, c0 is going
to influence the ARPES spectra via the phase factors describing the difference in the
optical paths for photoelectron waves originating on different atomic sites, as shown
in Eq. (3.8). The out-of-plane component of the momentum is

p⊥e =
√

2m (ω −W + εk)− �2(k + G)2, (3.22)

and we assume that only the photoelectrons with p⊥e > 0 are detected. In order
to calculate the ARPES patterns, we now need to set the values of the energy of
the incoming photons ω and the material constant, work function W . The intensity
distribution now depends on ω.

Examples of the ARPES spectra for different energies of the incoming radia-
tion have been shown in Fig. 3.6. At high-energies (Fig. 3.6a) the pattern does not
qualitatively change. However, at low energies (Fig. 3.6b–c), when the contribution
due to the states in the split bands is no longer present, the dependence on ω mani-
fests itself through a rotation of the pattern around the valley. These slightly rotated
patterns resemble experimental constant-energy maps of ARPES intensity shown in
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(a) (b)

Fig. 3.6 The influence of the interlayer spacing on the ARPES spectra for energy (a) ε = −1 eV,
(b)–(c) ε = −0.2 eV with respect to the neutrality point. The length of the side of the map in
the reciprocal space is (a) 16π

5a , (b)–(c) 4π
15a . Numerical values of the parameters used: γ0 = 3 eV,

a = 2.46 Å (resulting v ≈ 0.97 m/s), γ1 = 0.4 eV, γ3 = 0.2 eV, s0 = 0.129, c0 = 3.4 Å, W = 5 eV
and the energy width (a) � = 0.2 eV, (b)–(c) � = 0.04 eV

the online material supporting work published in Ref. [31]. The additional rotation
caused by the phase factor associated with the interlayer distance c0 makes extract-
ing the band structure parameters, and especially their signs, from the spectra much
more difficult. However, with detailed comparison with experiment and calibration
of the energy scale, it may still be possible. Then, an energy can be chosen for the

incoming photons so that p⊥e c0
2 ≈ 0 for photoelectrons originating from the states

close to the centre of the valley.
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Chapter 4
Magneto-Optical Spectroscopy

The behaviour of electrons in (quasi-)two-dimensional systems in external
magnetic fields is a fascinating area of physics. Classically, the Lorentz force caused
by the magnetic field curves the trajectory of a charged particle. If such a particle
is constrained to move only in one plane, in a strong enough field perpendicular
to that plane, the trajectory of the particle becomes a closed orbit. However, quan-
tum mechanically, due to wave nature of matter, only some of the orbits are stable.
For a two-dimensional solid in low temperatures, this results in the electronic band
structure turning into a discrete spectrum of Landau levels (LLs) [1]. The number
of states per unit area in each Landau level (LL) (degeneracy of the LL) is equal
to those originally within the range of one cyclotron energy ωc = eB

m (where m is
the effective mass of the electron) in the two-dimensional density of states, that is
eB
h per LL. The number of the LLs filled with electrons is described by the filling

factor ν = n h
eB (with ν = 0 corresponding to the neutral system). As ν is varied, for

example by changing the applied magnetic field, the Landau level crossing the Fermi
energy is filled or emptied of electrons. Repetitive crossing of the Fermi energy by
Landau levels leads, for example, to oscillations in the conductivity measured as a
function of the magnetic field (Shubnikov-de Haas effect) [2]. Similar in origin is the
appearance of discrete steps in the Hall conductivity σxy in the integer quantum Hall
effect (QHE) [3, 4]. In fact, it is the observation of the unusual sequencing of these
steps for monolayer and bilayer graphene [5–8] that fuelled most of the initial interest
in the Landau level structure of graphene systems. For monolayer, the sequence is
shifted with respect to the QHE sequence of a 2DEG, so that σxy = ±g e2

h (N + 1
2 ),

where N is the Landau level index and g is the level degeneracy (in graphene mate-
rials it is 4 due to double valley and double spin degeneracy). For bilayer, the steps
appear at σxy = ±g e2

h N . However, the plateau at σxy = 0 is missing. Both situations
can be easily understood with the help of the Landau level structure. In particular,
as the electronic structure of both systems is gapless (disregarding for a moment
any on-site asymmetries), an addiditional, unusual Landau level is present at the
energy ε = 0, sharing states between electrons and holes. Hence, both for mono-
layer and bilayer, no ν = 0 plateau exists in symmetric structures. For monolayer,
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integer filling factors follow then the sequence ν = ±2,±6,±10, . . . , leading to
σxy = ± 4e2

h (N + 1
2 ). For bilayer, as we will show, the ε = 0 level contains twice

as much electron states as other LLs. Thus, at least in strong magnetic fields, the
plateau sequence ν = ±4,±8,±12, . . . , results in σxy = ± 4e2

h N .
One of the ways to study the Landau level spectrum of a (quasi-)two-dimensional

semiconductor heterostructure is to examine its optical absorption spectrum in an
external magnetic field, usually perpendicular to the plane of the sample. This
method, called simply magneto-optical (absorption) spectroscopy [9], has been
extensively applied to graphene systems [10–19], mainly in relation to the unusual√

B -dependence of the Landau level energy on the magnetic field and the physics
of the zero-energy Landau level at very high fields. A review of the magneto-optical
absorption spectroscopy of graphene systems is given in the broader context of optical
properties of graphene multilayers in Ref. [20]. In monolayer graphene specifically,
these studies confirmed the unequally spaced Landau level spectrum, arising from
the linear electronic dispersion in the absence of the magnetic field, and the scaling
of the Landau level energies as

√
B. Some deviations from the predictions of the

tight-binding model with regards to the transition energies suggested contribution
of many-particle interactions to the picture [11]. This is different from the two-
dimensional systems with parabolic dispersion, where electron-electron interactions
have no impact on the Landau level transition energies in magneto-optical experi-
ments (‘Kohn’s theorem’) [21]. For bilayer graphene, with the electronic dispersion
quadratic at energies ε � γ1, the non-interacting theory predicts at low energies
a linear scaling of the Landau level energy with the strength of the magnetic field
[22]. At higher energies, ε ≈ γ1, the Landau level energy should follow a

√
B-

dependence. Thus, the Landau level spectrum of bilayer graphene should change
from that characteristic of a parabolic dispersion to that of a linear dispersion. This
has been observed experimentally by Henriksen et al. [14]. However, the changeover
to a
√

B behaviour occured at lower energies, and more suddenly, than expected. In
fact, for some filling factors, a better fit was achieved when fitted to monolayer dis-
persion rather than bilayer one. Again, the many-body interactions were suggested
as responsible for this departure from the predictions of the single particle theory.

In this chapter, we discuss the magneto-optical absorption spectroscopy of bilayer
graphene and test the limits of the tight-binding approach as applied to the experimen-
tal situation of Henriksen and co-workers. In particular, we investigate the importance
of the interlayer asymmetry in that experiment. This chapter is divided into three parts.
In the first one, Sect. 4.1, we describe the Landau level structure of bilayer graphene
using both the two-band and the four-band models. In this, we follow an approach
applied to graphite [23–25] and routinely used in the case of graphene systems [22,
26, 27]. We then derive in Sect. 4.2 selection rules for the optical absorption in mag-
netic field. We describe the optical strengths of transitions between any of the π
bands and include into the model presence of the physically most relevant asymme-
tries. We also show the resulting magneto-optical spectra. In the last part, Sect. 4.3,
we concentrate on the role of interlayer asymmetry in the abovementioned experi-
ment of Henriksen et al., results of which have been initially fitted to the predictions
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of the ’neutral bilayer’ model (tight-binding model with the interlayer asymme-
try equal to zero). We show that the experimental setup may have caused significant
charge asymmetries between the layers and thus rendered the ‘neutral bilayer’ model
unapplicable. We demonstrate that self-consistently obtained values of the interlayer
asymmetry in the presence of the magnetic field help to explain some of the discrep-
ancies between experimental results and the theory used to interpret them. Some of
the results contained in this chapter have been published in Refs. [28, 29].

4.1 Bilayer Graphene in an External Magnetic Field

4.1.1 Landau Levels in the Two-Band Model

In the following, we will work in the Landau gauge, A = (0, Bx), and the resulting
magnetic field

B = ∇ × A = (0, 0, B)

perpendicular to the sample. Let us consider a Landau function ψn,q = 1√
L y

eiqyφn

(x − qλ2
B), where L y is the length of the system in the y direction and φn(x) is the

eigenfunction of the quantum harmonic oscillator. We then observe, that operators
π̂ = px+i py and π̂

† = px−i py , with the the electronic momentum now containing
the electromagnetic vector potential, p = −i�∇− e A, coincide with the raising and
lowering operators in the space of functions ψn,q . That is,1

π̂
†
ψn = i

�

λB

√
2(n + 1)ψn+1, (4.1a)

π̂ψn = −i
�

λB

√
2nψn−1, (4.1b)

where the magnetic length λB =
√

�

eB .

Looking now at the leading term in the two-band approximation,2

Ĥeff = −v
2

γ1

⎛

⎝ 0
(
π̂

†
)2

π̂
2 0

⎞

⎠ , (4.2)

we realise that the eigenstates for the above matrix can be written in a general form
of�n = (ψn, aψn−2), with some complex coefficient a. In fact, after calculation we

1 From now on, we supress the index q as irrelevant to our work.
2 We recall here that the basis is constructed as (φ+,A1, φ+,B2)

T in the K+ and (φ−,B2, φ−,A1)
T in

the K− valley, see Sect. 2.3.

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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obtain a set of eigenvalues and eigenfunctions

εnα = α 2�
2v2

γ1λ
2
B

√
n(n − 1); (4.3)

�nα =
(
ψn

0

)
, n = 0, 1; �nα = 1√

2

(
ψn

αψn−2

)
, n ≥ 2; (4.4)

where we use the index n to number the Landau levels and α to distinguish between
the valence (α = −1) and conduction (α = 1) band. We see that at low energies,
the energy of the Landau level is proportional to the strength of the magnetic field
B. Also, for large n the LLs are almost equidistant as

√
n(n − 1) ≈ n. Two levels,

n = 0 and n = 1, have the same energy, ε0 = ε1 = 0, giving rise to an unusual,
8-fold degenerate Landau level, which is shared between electrons and holes and thus
does not require any index α. Interestingly, for n = 0, 1, the wavefunction posesses
a component only in one of the layers: layer 1 for the electronic states in the valley
K+ and layer 2 for the states in the valley K−.

4.1.2 Landau Levels in the Four-Band Model

The derivation of the Landau level spectra within the four-band model follows very
much the same approach as in the case of the two-band approximation. Again, we
neglect γ3 and other less important couplings and we start with the neutral bilayer.
In this case, we construct the eigenstates using functions ψn and ψn−2 (for the first
two components of the eigenstate), as well as ψn−1 (for the last two components).
In the following, we use superscript c (s) to denote Landau levels originating from
the low-energy (high-energy) bands and α equal to 1 or −1 to indicate the sign of
the energy. The exact energies for the low-energy bands are given by

εc
0 = εc

1 = 0,

εc
nα =

α√
2

(
γ 2

1 + 2
�

2v2

λ2
B

(2n − 1)−
√

γ 4
1 +

4�2v2γ 2
1

λ2
B

(2n − 1)+ 4�4v4

λ4
B

) 1
2

for n ≥ 2. (4.5)

The corresponding expression for the high-energy bands is

εs
nα =

α√
2

(
γ 2

1 + 2
�

2v2

λ2
B

(2n − 1)+
√

γ 4
1 +

4�2v2γ 2
1

λ2
B

(2n − 1)+ 4�4v4

λ4
B

) 1
2

for n ≥ 1. (4.6)
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Note that in this formulation, for high-energy LLs indexing starts with n = 1, not
n = 0, emphasizing the distinctiveness of the ε = 0 LL. Each level has additional
4-fold degeneracy due to valleys and spins.

For magnetic fields B<20T, expressions for the LL energy in a symmetric bilayer,

Eqs. (4.5) and (4.6), can be simplified using a small parameter x =
√

2�v
λBγ1
; |x | � 1.

We obtain the following approximations for the energies εc
nα and εs

nα:

εc
nα ≈ αγ1

√
n(n − 1)x2

[
1− (n − 1

2
)x2

]
,

(4.7)

εs
nα ≈ αγ1

[
1+ 1

2
(2n − 1)x2 − (n2 − n + 1

8
)x4

]
.

Equations (4.7) allow us to write the eigenstates in terms of the powers of x . For
example, for the low-energy bands, we suggest the eigenstates in the form of:

ψc
nα =

1√
2

⎛

⎜⎜⎝

[
1+∑

k=1 Ak xk
]
ψn

α
[
1+∑

k=1 Bk xk
]
ψn−2

iξ
√

nx
[
1+∑

k=1 Ck+1xk
]
ψn−1

−iξα
√

n − 1x
[
1+∑

k=1 Dk+1xk
]
ψn−1

⎞

⎟⎟⎠ , n ≥ 2, (4.8)

what leads to the following relations between the coefficients3:

Bk = Ak + 1
2 Ak−2, B1 = A1,

Ck+1 = Ak − (n − 1)Ak−2, C2 = A1,

Dk+1 = Ak − (n − 1
2 )Ak−2, D2 = A1.

Keeping terms up to x2 and requiring that the eigenstates are normalised, we have

ψc
nα =

1√
2

⎛

⎜⎜⎝

[
1− 1

2 nx2
]
ψn

α
[
1− 1

2 (n − 1)x2
]
ψn−2

iξ
√

nxψn−1

−iξα
√

n − 1xψn−1

⎞

⎟⎟⎠ , n ≥ 2, (4.9)

and the two ‘special’ eigenstates (n = 0 and n = 1),

ψ0 =

⎛

⎜⎜⎝

ψ0
0
0
0

⎞

⎟⎟⎠ , ψc
1 =

⎛

⎜⎜⎝

[
1− 1

2 x2
]
ψ1

0
iξ xψ0

0

⎞

⎟⎟⎠ . (4.10)

For the high-energy bands, we get:

3 These relations were not investigated beyond k = 3.
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ψ s
nα ≈

1√
2

⎛

⎜⎜⎜⎜⎝

iξ x
√

nψn

−iξαx
√

n − 1ψn−2(
1− nx2

2

)
ψn−1

α
[
1− x2

2 (n − 1)
]
ψn−1

⎞

⎟⎟⎟⎟⎠
, n ≥ 1. (4.11)

We now turn to asymmetric bilayer graphene. In particular, we are interested in
(i) the interlayer asymmetry u and (ii) the substrate-induced intralayer asymmetry in
the bottom layer only, δ. The former is taken exactly as defined in Sect. 2.2.3 while
the latter can be obtained by taking �AB = �, and reflects in the simplest way
interaction of bilayer with an underlying substrate. In the case of bilayer graphene
grown epitaxially on diatomic substrate, such as SiC, this interaction distinguishes
between sublattices in the bottom layer. However, due to a much greater distance, the
interaction between the substrate and the top layer is neglected. The Hamiltonian is

Ĥ = ξ

⎛

⎜⎜⎝

u
2 + δ

4 (1+ ξ) 0 0 vπ̂
†

0 − u
2 − δ

4 (1− ξ) vπ̂ 0
0 vπ̂

† − u
2 + δ

4 (1− ξ) ξγ1

vπ̂ 0 ξγ1
u
2 − δ

4 (1+ ξ)

⎞

⎟⎟⎠ . (4.12)

Let us treat the diagonal part as a small perturbation and concentrate on Landau
levels n = 0, 1. Then, using standard perturbation theory, we can obtain the following
changes of the energies ε0 and εc

1,

ε0 = ξ u

2
+ ξ δ

4
(1+ ξ),

εc
1 = ε0 − x2

(
ξu + 1

2
δ

)
. (4.13)

Interestingly, the energy εc
1 for one of the valleys decreases with magnetic field,

whereas ε0 is independent of B. As a result, Landau level with index n = 1 is closer
to the neutrality point than the Landau level n = 0.

To find the perturbed eigenstates, we notice that because the perturbation is
diagonal, only mixing between Landau levels with the same Landau index is impor-
tant. As a result, the ψc

0 state remains unperturbed, while

ψc
1 ≈

⎛

⎜⎜⎝

[
1− 1

2 x2
]
ψ1

0
iξ xψ0

iξ x
2γ1
(2ξu + δ) ψ0

⎞

⎟⎟⎠ ,

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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ψ s
1α ≈

1√
2

⎛

⎜⎜⎜⎜⎜⎝

iξ x
(

1+ 1
γ1

[
ξu

(
1− 1

4α
)+ δ

2

(
1+ 1

4αξ
)])

ψ1

0[
1− x2

2 − α
2γ1

(
ξ u

2 − ξ δ4
)]
ψ0

α
[
1+ α

2γ1

(
ξ u

2 − ξ δ4
)]
ψ0

⎞

⎟⎟⎟⎟⎟⎠
,

where we kept only the leading terms in the perturbation and x .
Similar calculation can be performed for the high-energy states for n ≥ 2, yielding

energies

εs
n ≈ αγ1

[
1+ 1

2
(2n − 1)x2 −

(
n2 − n + 1

8

)
x4

]
− δ

4

+ x2
[
ξu

2
+ δ

2

(
n − 1

2

)]
, n ≥ 1,

and perturbed eigenstates

ψ s
nα ≈

1√
2

⎛

⎜⎜⎜⎜⎜⎜⎝

iξ x
√

n
[
1+ ξα

γ1

( 7
4 u + δ (

ξ + 1
8

))]
ψn

−iξαx
√

n − 1
[
1− ξα

γ1

( 7
4 u − δ (

ξ − 1
8

))]
ψn−2[

1− 1
2 nx2 − ξα

4γ1

(
u − δ

2

)]
ψn−1

α
[
1− 1

2 (n − 1)x2 + ξα
4γ1

(
u − δ

2

)]
ψn−1

⎞

⎟⎟⎟⎟⎟⎟⎠
, n ≥ 2.

(4.14)

However, the change of the low-energy Landau levels with n ≥ 2 is more difficult
to describe. Because of the closeness of two of the levels, perturbation theory is only
applicable if u and δ are small in comparison to the spacing between them, u, δ �
2γ1x2√n(n − 1) (this translates into the scaling u

B ,
δ
B � 4.6 meV

T ). Alternatively, if
u, δ ∼ γ1

√
n(n − 1)x2 � γ1, one can use the effective Hamiltonian,

Ĥeff = −v
2

γ1

⎛

⎝ 0
(
π̂

†
)2

π̂
2 0

⎞

⎠+
(
ξ u

2 + ξ δ4 (1+ ξ) 0
0 −ξ u

2 − ξ δ4 (1− xi)

)

+ v2

γ 2
1

(− (
ξu + δ

2

)
π̂

†
π̂ 0

0
(
ξu − δ

2

)
π̂ π̂

†

)
. (4.15)

This Hamiltonian has been obtained in a manner described in Sect. 2.3. The resulting
energies and eigenstates are

εc
nα ≈

δ

4
− x2

[
ξ

u

2
+ δ

2

(
n − 1

2

)]
+ α

√

(εn)2 + 1

4

(
u2 + uδ + 1

16
δ2

)
,

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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(e)

(a) (b)

(c) (d)

Fig. 4.1 Numerically calculated Landau levels of bilayer graphene for range of high (a and b) and
low (c and d) energies; black solid and dashed lines in c and d represent levels at valley K+ and K−
respectively, grey solid lines in the background show the Landau level spectrum for no asymmetries
(u, δ = 0); in a and b only the spectrum at K+ is shown for clarity. Note that nonzero u in (b) affects
the high-energy LLs very weakly and so the corresponding grey lines are underneath the black ones.
Zero of the energy scale is shifted to the middle of the gap opened in each case at the K point.
e Area bounded by dashed red rectangle in d shown again with the 11 lowest LLs at K+: black solid
lines - taking into account v3 = 0.15eV , grey dashed lines - v3 neglected. Values of parameters
used: v = 1×106 m/s, γ1 = 0.35 eV, resulting in low-energy effective mass meff = γ1/2v2 ≈ 0.03
of the electron mass. Figure reprinted from Ref. [28], Copyright (2009), with permission from IOP
Publishing

ψ̃c
nα =

1√
C

(
εnψn(

ε̃c
nα − ξ

[ u
2 + δ

4 (1+ ξ)
]+ (

ξu + δ
2

)
nx2

)
ψn−2

)
.

Above, εn = γ1x2√n(n − 1), C is the normalisation coefficient and we used the
tilde symbol to temporarily distinguish the eigenstate of the effective two-band
Hamiltonian from the eigenstate of the four-band model. We can recover the high-
energy components of the eigenstate, to obtain

ψc
nα ≈

1√
C

⎛

⎜⎜⎝

εnψn(
εc

nα − ξ
[ u

2 + δ
4 (1+ ξ)

]+ (
ξu + δ

2

)
nx2

)
ψn−2

iξ xεn
√

nψn−1

−iξ x
√

n − 1
(
εc

nα − ξ
[ u

2 + δ
4 (1+ ξ)

]+ (
ξu + δ

2

)
nx2

)
ψn−1

⎞

⎟⎟⎠ .

(4.16)

The numerically calculated Landau level spectra both in the absence and presence
of the asymmetries u and δ/2 are shown in Fig. 4.1a–d. The low-energy Landau level
spectrum for neutral bilayer, equivalent with Eq. (4.5), is shown as grey solid lines
in Fig. 4.1a–d. Those levels create a fan-plot originating at zero energy. As shown
earlier within the two-band approximation, levels n = 0 and n = 1 have the same
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energy, leading to an unusual 8-fold degenerate level at ε = 0. The high-energy LLs,
Eq. (4.6), create two additional fan-plots originating at ε = ±γ1, which are shown
together with low-energy LLs with grey solid lines in Fig. 4.1a–b. The Landau level
spectra for u = 50 meV ( δ2 = 50 meV) is shown with black lines in Fig. 4.1b and
d (a and c). Both of the asymmetries lift the valley degeneracy. Also, in both cases
the additional degeneracy of n = 0 and n = 1 LLs is removed, ε1 �= ε0 [note that
the n = 0 level is shifted with respect to the middle of the gap at the K point from
ε = 0 in opposite directions in the valley K+ (ξ = +) and K− (ξ = −)]. As can be
seen in Fig. 4.1a, interlayer asymmetry u affects the high-energy LLs very weakly
and so, the corresponding black lines cover grey lines showing high-energy LLs in
the symmetric bilayer. At low energies and low fields (Fig. 4.1e), signatures of a
Mexican hat developing in the electronic spectrum of an asymmetric bilayer can be
noticed in the fan-plots of the LL spectrum. Inverted curvature in the central part of
such a structure (hole-like in conduction and electron-like in valence band) results in
inverted behaviour of Landau levels at very low B [the energy of electron (hole) levels
decrease (increase) with increasing B] which then returns to typical behaviour at
higher B [the energy of electron (hole) levels increase (decrease) with increasing B].
This results in interlevel crossings. Also, this is a regime where the influence of
the parameter v3, neglected so far, is important, because it mixes LLs n and n − 3,
thus changing some of the interlevel crossings into anticrossings. An example of the
numerically calculated spectrum taking into account v3 using a procedure explained
in the next section is shown in Fig. 4.1e.

4.1.3 Numerical Treatment of the γ3 Coupling

The derivation of the Landau level structure of bilayer graphene around a single
valley, as shown in previous sections, is possible because each of the components of
the wave function can be written in terms of only one Landau functionψn . Any of the
on-site asymmetries, as well as the couplings γ0, γ1 or γ4 can be incorporated into
this scheme. However, the γ3 coupling leads to mixing of the LLs with each other
and the problem can no longer be solved in this way. This perturbation becomes
important only at weak magnetic fields and in most situations, it can be neglected
for fields B > 5T. Nevertheless, we investigate here how the γ3 terms affect the
Landau level structure of bilayer graphene at weak magnetic fields. This is because
with improving sample fabrication processes, it is now possible to probe the physics
at energies where γ3 is important [30]. We use an approach similar to that developed
to treat γ3 in the calculation of the LL spectrum of graphite [25] and for simplicity,
discuss the case of the two-band model, Eq. (2.12).

In an external magnetic field, the γ3 perturbation mixes LLs with each other so that
the electron amplitude on each sublattices is now a linear combination of infinitely
many functions ψn . Using the knowledge from the previous sections, we again want
to describe the eigenstates with vectors whose odd and even components correspond
to electron wave amplitudes on one of the sublattices, B2 (A1) and A1 (B2) in the
K+ (K−) valley, respectively. Also, we want each component to be expressed using

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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Fig. 4.2 Comparison of the low-energy and weak-field Landau level structures obtained neglecting
the γ3 coupling (black lines) and taking it into account (red lines). Values of parameters used:
v = 1× 106 m/s, γ1 = 0.4 eV, resulting in low-energy effective mass meff = γ1/2v2 ≈ 0.03 of the
electron mass, v3 = 0.1v (if applicable)

a single function ψn . We choose the ordering of the entries corresponding to specific
ψn in such a way, so that pair of vectors (2n − 1)-th and (2n)-th create a minimal
subspace required to describe the n-th LL in the absence of γ3. In the absence of γ3,
this tallies to repeating Hamiltonian (4.2) as the diagonal block of an infinite matrix,
with all other elements equal to zero. The presence of γ3 leads to some off-diagonal
perturbations in this matrix, which can be written in the form4:

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 D̂(1) 0 · · ·
0 0 0 0 D̂(2) · · ·
0 0 Ĥ(1) 0 0 · · ·

D̂
†
(1) 0 0 Ĥ(2) 0 · · ·

0 D̂
†
(2) 0 0 Ĥ(3) · · ·

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.17)

where

Ĥ(n) =
(

0 v2

γ1
x2√n(n + 1)

v2

γ1
x2√n(n + 1) 0

)
,

(4.18)

D̂(n) =
(

0 −iξ xv3
√

n
0 0

)
.

4 Note, that two rows and columns in the following matrix, identically equal to zero, give rise to
two solutions at zero energy, which correspond to unphysical eigenstates (zero vectors) and should
not be confused with the zero energy Landau levels described earlier in the text.
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We then truncate the infinite basis, restricting the calculation to a given n LLs and
diagonalise the resulting Hamiltonian numerically. The number of the basis vectors
required in the calculation in order to describe properly the low-energy LL structure
increases with decreasing magnetic field (reflecting growing importance of the γ3
terms at weaker fields). Basis of of the dimension 800 is enough to describe LL
spectra for magnetic fields B > 0.01T. Similar analysis can be performed within the
four-band model. However, the matrix dimension has to be then doubled for the same
accuracy at low energies, whereas the correction to the high energy LLs is negligible.

The low-energy Landau level spectra at weak fields has been presented in Fig. 4.2.
The black lines show the LL spectrum equivalent to that described in Eq. (4.3),
whereas the red lines demonstrate the low-energy LL spectrum with the γ3 taken
into account (via a procedure explained above). Only the energies of few lowest
Landau levels are affected. The unusual degeneracy of the ε = 0 Landau level is
preserved down to the lowest fields, where two LLs merge with the zero-energy
level. Then, the n = 0 LL becomes 16-fold degenerate reflecting the existence of
four Dirac cones in the electronic spectrum.

4.2 Magneto-Optical Selection Rules and the Absorption Spectra

We describe the electron-photon interaction within the four-band linear approxima-
tion, by expanding the Hamiltonian Ĥξ ( p − e A), where [ p − e A] is the canonical
momentum including the electromagnetic vector potential A, up to the first power
in A, and write the interaction Hamiltonian

Ĥ int = ĵ · A, (4.19)

where ĵ = −e( ∂ Ĥξ

∂px
,
∂ Ĥξ

∂py
) is the current operator. The incoming beam is char-

acterised by a time-dependent electric field, Eω(t) = Eωe−iωt . Using Maxwell’s
equations, we arrive at

A = 1

−iω
Eωe−iωt . (4.20)

Wave functions derived in Sect. 4.1.2 can now be used to determine transition rules
for the absorption of right (⊕) and left-handed (
) circularly polarized light Eω =
Eωl⊕/
, with l⊕ = 1√

2
(l x − i l y) and l
 = 1√

2
(l x + i l y). Neglecting for now

the prefactor Eω−iω in the interaction above, we end with perturbation
(

ĵ · l⊕/

)

for

circularly polarised light interacting with electrons in the material. We can now find
optical strengths of inter-LL transitions. For the transitions between the low-energy
bands (c→ c), we obtain:
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|〈ψc
1 | ĵ · l⊕|ψc

0 〉‖2 = |〈ψc
0 | ĵ · l
|ψc

1 〉|2 ≈
e2v2x2(2ξu + δ)2

2γ 2
1

,

|〈ψc
2α| ĵ · l⊕|ψc

1 〉‖2 = |〈ψc
1 | ĵ · l
|ψc

2α〉‖2

≈ 8e2v2x2

C

{
εc

2α − ξ
[

u

2
+ δ

4
(1+ ξ)

]
+ (2ξu + δ) x2

}2

, (4.21a)

|〈ψc
nβ | ĵ · l⊕|ψc

mα〉‖2 = |〈ψc
mα| ĵ · l
|ψc

nβ〉‖2

≈ δn−1,m
2me2v2x2

C2 ε2
m

{
εc

nβ − ξ
[

u

2
+ δ

4
(1+ ξ)

]
+

(
ξu + δ

2

)
nx2

}2

.

For the transitions between the low-energy and the high-energy bands (s ↔ c),
we have:

|〈ψ s
nα| ĵ · l⊕|ψc

m〉|2 = |〈ψc
m | ĵ · l
|ψ s

nα〉|2 ≈ e2v2δn−1,m,m = 0, 1,

|〈ψ s
nα| ĵ · l⊕|ψc

mβ〉|2 = |〈ψc
mβ | ĵ · l
|ψ s

nα〉|2

≈ e2v2ε2
m

C

[
1+ ξα

4γ1
(2u − δ)− 3mx2

]
δn−1,m,m ≥ 2, (4.21b)

|〈ψc
nβ | ĵ · l⊕|ψ s

mα〉|2 = |〈ψ s
mα| ĵ · l
|ψc

nβ〉|2

≈ e2v2(C − ε2
n)

C

[
1− ξα

4γ1
(2u − δ)− 3mx2

]
δn−1,m,m ≥ 1.

Finally, for the transitions among the high-energy bands alone (s → s), we have:

|〈ψ s
nβ | ĵ · l⊕|ψ s

mα〉|2 = |〈ψ s
mα| ĵ · l
|ψ s

nβ〉|2 ≈ 2e2v2x2mδn−1,m,m ≥ 1. (4.21c)

Equations in 4.21 generalise the earlier study of optical and magneto-optical
absorption in bilayers [22]. Examples of allowed transitions are illustrated in
Fig. 4.3a, b. Independently of the presence/absence of asymmetries δ or u, selec-
tion rules for absorption of right-handed polarized light are such that the Landau
level index has to be decreased by one, whereas absorption of left-handed photons
requires an increase of the Landau level index by one. Also, optical strengths of
c→ c and s → s transitions are proportional to the magnetic field B and LL index,
whereas optical strengths of s ↔ c transitions are almost independent of B. As x is
a small parameter, the intensity of the first s ↔ c transitions should be higher than
for c→ c transitions corresponding to the same energy of incident radiation �ω.

We describe the optical absorption of the incoming photons by the sample in
the presence of an external magnetic field, Iabs, by the ratio of the energy absorbed
by the material to the energy carried by the electromagnetic field, 〈S〉 ∝ E2

ω. The
energy absorbed is proportional to the energy of the incoming photons, density of
electrons in the Landau level (and thus to the strength of the magnetic field B) and
the transition probability between the initial and final states, expressed by the optical
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(a) (b) (c)

Fig. 4.3 Allowed intraband (a) and interband (b) optical excitations. Low-energy (high-energy)
LLs are depicted with solid (dashed) lines. Transitions in l⊕ (l
) are shown on the left (right) of
the energy axis, under⊕ (
) symbol. Energy axis not to scale; not shown is very weak |0c〉 → |1c〉
transition allowed only in the presence of asymmetry. c Magneto-optical absorption spectrum for
the energy of incident light �ω ≈ |γ1|; magnetic field B = 10T, γ1 = −0.35 eV, v = 106 m/s;
Landau level broadening was approximated with a Lorentzian with full width at half maximum
20 meV. Figure reprinted from Ref. [28], Copyright (2009), with permission from IOP Publishing

strengths above. One also has to take into account electron level occupancy fn of the
level |n〉 and conservation of energy in the process. Hence, the intensity of absorption,
Iabs, is proportional to

Iabs(ω) ∝
∑

m,n

(εn − εm) ( fm − fn)

∣∣∣〈n| ĵ · l⊕/
|m〉
∣∣∣
2

B

ω2 δ(εn − εm − �ω), (4.22)

where |m〉 and |n〉 are the initial and final electron states, respectively. In Fig. 4.3c, the
numerically calculated magneto-optical spectrum of symmetric bilayer for �ω ≈ |γ1|
has been shown (the range of energies at which the s ↔ c transitions become
possible). For this purpose, we approximated the Dirac delta expressing the energy
conservation with a Lorentzian, with the full width at half-maximum parameter �
associated with the broadening of the Landau levels (as the incoming photon beam is
monochromatic). We assumed the same broadening of all Landau levels. The onset
of s ↔ c transitions (the two highest peaks around �ω ≈ 0.39 eV) can be observed
against the background of c→ c excitations.



52 4 Magneto-Optical Spectroscopy

4.3 Magneto-Optical Spectroscopy in Charged Bilayer Graphene

4.3.1 Landau Level Spectrum in Charged Bilayer Graphene:
Self-Consistent Analysis of the Interlayer Asymmetry Gap

In the infrared experiment performed by Henriksen and co-workers [14], inter-LL
transitions for the filling factors ν = ±4,±8,±12,±16 have been traced individu-
ally as a function of the magnitude of the applied external (perpendicular) magnetic
field. The observed behaviour of the transition energies followed the predictions of
the non-interacting model, that is, showed a transition from a linear dependence
of the Landau level energy on B for low energies to a

√
B dependence for higher

energies. However, the changeover occured at lower energies, and more suddenly,
than expected. For some filling factors, a better fit was actually achieved when the
data was fitted to monolayer dispersion rather than bilayer one. In their conclu-
sion, the authors suggested many-body interactions as responsible for this depar-
ture from the predictions of the single-particle theory. However, the experimental
setup and the need to fix the filling factor to trace a particular transition while the
magnetic field was changed, implies significant changes of the carrier density in
bilayer graphene during the experiment. That was achieved by applying an exter-
nal electric field perpendicular to the layers. Such external electric field is known
to induce interlayer asymmetry in the system [31–33], in our model described by
the on-site energy u (see Sect. 2.2.3). As has been shown in the previous sections,
non-zero asymmetry u, caused by a possible difference in electric potential energy
between the layers, opens a gap in the electronic spectrum and, in the presence of
an additional external magnetic field, modifies the LL spectrum [26, 28, 34–36],
thus affecting inter-LL transition energies. To model this effect, we employ a self-
consistent theory of the charging of bilayer graphene in external magnetic field. We
extend here the self-consistent analysis of Ref. [31], performed in the absence of
the magnetic field, into the regime of strong quantizing magnetic fields, taking into
account the possibility that there is a finite asymmetry already in a neutral structure
(see Eq. 4.25 below). Our investigation has first been published in Ref. [29].

Let us consider a gated bilayer as shown in Fig. 4.4. The interlayer distance is
c0. In an external magnetic field B, the Landau levels are described by the four-
band Hamiltonian, Eq. (4.12). We neglect from now on the intralayer asymmetry δ.
In order to keep the filling factor ν fixed while changing B, a total excess density,
n = ν eB

h , must be induced using the gate. The density n is shared between the two
layers: n = n1 + n2, where, assuming a top gate, n2 (n1) is the excess density on
the layer closest to (furthest from) the gate. The interlayer asymmetry u is a result of
different electric potentials U pot

1 and U pot
2 on the first and second layer, respectively,

u = U pot
1 −U pot

2 . (4.23)

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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Fig. 4.4 Schematic of a ‘biased bilayer’ showing all charge densities and electric fields induced
by a single gate

We assume that there is no electric field below the bottom layer (layer 1). Then, by
applying Gauss’ law, we can notice that the electric field E between the layers, which
arises due to the incomplete screening of the gate electric field by the charge en2 on
the top layer, is related to the unscreened charge density n1,

|E| = en1

ε0εr
, (4.24)

where here ε0 and εr are the permittivity of vacuum and the effective dielectric
constant determined by the substrate (in the actual experiment, bilayer graphene was
deposited on SiO2), respectively. Finally, using the relation between the electric field
and electric potential, we can write the equation relating the interlayer asymmetry u
to the density n1,

u(ν, B) = w + e2c0n1(ν, B)

ε0εr
. (4.25)

Here, w takes into account a finite asymmetry of a neutral structure (internal
electric field due to, for example, initial non-intentional doping of the flake by
deposits/adsorbates). In our numerical calculations we use εr = 2.

On the one hand, u influences the LL spectrum via the Hamiltonian in Eq. (4.12).
On the other hand, its value depends on the charge density n1, which can only be
obtained with a full knowledge of the LL spectrum and the wave functions corre-
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sponding to each Landau level. Therefore, calculation of u given a specific magnetic
field B and filling factor ν requires a self-consistent numerical analysis. Our calcu-
lation, based on the four-band model including only couplings γ0 and γ1, consists of
the following steps:

• For each given value of the magnetic field B, 5 < B < 20T, and the filling factor
ν we choose a starting u, and diagonalize the Hamiltonian to find the LL spectrum
and the eigenfunctions for each Landau level with index n ≤ Nmax, where Nmax is
the highest Landau level index included in the calculation. In the actual numerical
calculations performed, Nmax ∼ 300 (note that, for a sufficiently large Nmax, the
results should be independent of the exact value of Nmax).
• We sum over all filled Landau levels and determine the excess electron densities

on each layer. Note that, as a nonzero value of u splits the valley degeneracy of the
LLs (see Sect. 4.1.2), care has to be taken when comparing densities in specific
LLs in biased and neutral structures, not to confuse levels in different valleys.
A crucial point here, is the importance of the electronic states in the high-energy
bands. For example, it is not sufficient to just increase Nmax, if the procedure is
treated exclusively within the two-band approximation. In fact, it has been already
shown for the case of zero magnetic field [31], that the high-energy bands are
necessary for the iterative procedure to converge. This is because introduction of
the interlayer asymmetry u affects the low-energy bands in a much more drastic
way than the split bands (see Fig. 2.4). Effectively, the charge distribution between
the layers calculated within the two-band model is much more asymmetric than
it should be and as a result the value of u may not converge. In this sense, the
electron density contained in the high-energy bands stabilises the procedure.
• Finally, using Eq. (4.25) we find the asymmetry parameter and, then, iterate the

numerical procedure to obtain the self-consistent value of u.

In the above procedure, we implicitly assumed that Landau levels are infinitely
sharp as a function of energy (no Landau level broadening considered). We also limit
this procedure to integer filling factors. In fact, only those filling factors investigated
in the experiment were looked at here.

The self-consistently calculated values of u obtained for several values of the
filling factor ν are shown in Fig. 4.5a and b for the case of the intrinsic asymmetry
w = 0 and w = −100 meV, respectively. In the case when w = 0, the induced
interlayer asymmetry is antisymmetric with respect to the change of the filling factor
from positive to negative. This is because changing the filling factor from +ν to
−ν corresponds to reversing the applied electric field and inducing excess densities
−n,−n1 and−n2 and thus reversing the sign of u. Also, with decreasing B all curves
tend towards u = 0 (w = 0) and u ≈ −60 meV (w = −100 meV). These values
are the results of the self-consistent calculation with corresponding values of w in
the absence of a magnetic field [31] and provide an independent validation of our
results.

Knowing the self-consistent values of u for a specific filling factor and a range
of magnetic fields, we can plot the resulting low-energy Landau level spectrum.
Note that although naturally similar to the spectra discussed before, these are not the

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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Fig. 4.5 Top row results of a self-consistent calculation of the interlayer asymmetry u for a w = 0
and b w = −100 meV. Bottom row: the LL spectrum as a function of applied magnetic field B
for constant filling factor and excess density-induced interlayer asymmetry u: c ν = +4;w = 0,
and d ν = +12; w = −100 meV. Dashed and solid lines denote levels belonging to K+ and
K−, respectively. The line corresponding to the last filled Landau level is shown in bold. In these
calculations we used v = 106 m/s and γ1 = 0.4 eV. Figure reprinted from Ref. [29], Copyright
(2009), with permission from Elsevier

same, as the interlayer asymmetry u takes new value for each value of B. Examples
of such spectra are given in Fig. 4.5c and d for ν = +4, w = 0 and for ν = +12,
w = −100 meV, respectively. To refer to Landau levels as shown in Fig. 4.5, we
explicitly use in what follows three symbols introduced separately before: snξ , where
s attributes the LL to the conduction (+) or valence (-) band, n is the LL index and
ξ ∈ (+,−) identifies the valley (K+ or K−) that the level belongs to, respectively.
As mentioned in the previous sections, the Landau levels n = 0, 1 have no s index,
as those levels are shared between electrons and holes when u = 0. The sign of the
valley splitting of the level sn depends on the sign of u: for u > 0, level sn− has
higher energy than level sn+whereas the opposite is true for u < 0. Levels n = 0, 1
behave differently (see Sect. 4.1.2)—in this case

εn+ > 0
εn− < 0

}
for u > 0,

εn+ < 0
εn− > 0

}
for u < 0. (4.26)
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The size of the valley splitting of the low-energy LLs increases with u and B and
for |u| ≈ 0.1 eV, B ≈ 20T (filling factors ν = +12,+16 in Fig. 4.5a and ν =
−8,−12,−16 in Fig. 4.5b) is of the order of 10 meV.

4.3.2 Tracking a Single Inter-LL Transition: Low-Energy
Inter-Landau Level Transitions

Using spectra similar to those shown in Fig. 4.5c and d, we now find the energy of
the low-energy inter-Landau level transitions for filling factors investigated in the
experiment and we hope to match the experimental data better than in the original
report, where the interlayer asymmetry was neglected [14]. We may also expect a
better (although marginally, as it turns out) match than that adopted in [37], where
the dependence of interlayer asymmetry on the density n and its influence on Landau
level transition energies was estimated by neglecting screening effects. As explained
before, in the experiment infrared light of energy �ω was incident on the graphene
bilayer in a strong external magnetic field and with a constant filling factor in order
to excite charge carriers between a prescribed pair of Landau levels and probe the
energy dispersion. According to the selection rules determined in Sect. 4.2, only
transitions which change the LL index n by one are allowed. Also, as photons provide
a very small momentum transfer, we only consider transitions between levels at the
same K point. Thus, the corresponding low-energy transitions for filling factors
ν = +4,+8,+12,+16 are 1ξ → +2ξ , +2ξ → +3ξ , +3ξ → +4ξ , and +4ξ →
+5ξ , respectively. For filling factors ν = −4,−8,−12,−16, they are −2ξ → 1ξ ,
−3ξ →−2ξ ,−4ξ →−3ξ , and−5ξ →−4ξ , respectively. However, as transitions
between the same levels at different K points differ too little in energy to have been
resolved separately in the abovementioned experiment (in fact, they can only be
clearly distinguished in Fig. 4.6 for the case ν = 4), we obtain a single transition
energy ενtrans for a given filling factor ν by comparing the relative intensities of the
corresponding transition at each K point:

ενtrans =
ενtrans(K+)I ν(K+)+ ενtrans(K−)I ν(K−)

I ν(K+)+ I ν(K−)
(4.27)

where ενtrans(Kξ ) and I ν(Kξ ) are the transition energy at the Kξ point and its inten-
sity, respectively. The intensities I ν(Kξ ) are calculated as previously explained in
Sect. 4.2.

The results for low-energy inter-Landau-level excitations calculated using the
interlayer asymmetry u(ν, B) obtained in the self-consistent fashion as described in
Sect. 4.3.1, are shown in Fig. 4.6 (for w = 0) and Fig. 4.7 (for w = −100 meV). We
first discuss the case w = 0 presented in Fig. 4.6. In this case, for a specified value
of B, the asymmetry u changes sign if the sign of the filling factor is changed to the
opposite (Fig. 4.5a). Hence, the Landau level spectrum for ν and −ν are the same
but the K points have to be exchanged. Therefore, ενtrans(K+) = ε−νtrans(K−), what is
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Fig. 4.6 Energy of low-energy inter-LL excitations as a function of magnetic field for w = 0. The
broken lines are the contributions of individual valleys to the transition energy: black dashed and
dot-dashed lines denote the transition energy for positive (negative) ν at K+ (K−) and K− (K+),
respectively. The solid black lines show the contribution of both valleys to the transition energy,
calculated according to Eq. (4.27) (in this case the transition energy is the same for both positive
and negative ν), whereas solid grey lines depict the transition energy in a neutral (u = 0) structure.
Note that for ν = 8, 12, 16 all black lines are very close to each other and difficult to resolve. Figure
reprinted from Ref. [29], Copyright (2009), with permission from Elsevier

clearly seen in all four graphs in Fig. 4.6. Moreover, both transitions have the same
intensity and contribute equally to ενtrans (shown in black solid line). We can compare
our result for ενtrans to that obtained for a neutral bilayer (u = 0 at all magnetic fields
and filling factors). For the latter case, transition energies are simply given by the
spacing between corresponding valley-degenerate Landau levels (see Eq. 4.5) and are
plotted in Fig. 4.6 with grey solid lines. We see that non-zero u decreases the energy of
the transition. The greater |u| and B, the bigger the difference between the excitation
energy in the neutral and biased bilayer graphene. However, this difference decreases
with increasing filling factor (this is because the higher energy of the electron states
involved, the lesser they are influenced by the perturbation).

Introduction of the parameter w describing initial intrinsic interlayer charge
asymmetry breaks symmetry between the conduction and valence band inter-LL
excitations as presented in Fig. 4.7 for the case of w = −100 meV. The valence
band excitation has greater energy than the conduction band excitation at fill-
ing factor ν = ±4. However, this situation is reversed for higher filling factors
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Fig. 4.7 Energy of low-energy inter-LL excitations as a function of magnetic field for w =
−100 meV. Black solid and dashed lines denote the transition energy for positive and negative
filling factor, respectively. Grey solid lines depict the transition energy in a neutral (u = 0) struc-
ture. Figure reprinted from Ref. [29], Copyright (2009), with permission from Elsevier

ν = ±8,±12,±16 (this reversal was not observed in the experiment [14]). For this
specific case, w = −100 meV, the asymmetry introduced between excitations for
filling factors ν and −ν is of the size of 3–10 meV.

These two effects: (1) reduction of the transition energy with the increase of
u and (2) breaking of the symmetry between transitions for positive and negative
filling factor caused by non-zerow, may partly account for the disagreement between
experimental findings and transition energies obtained using Eq. (4.5) applicable
for neutral bilayers which were used in Ref. [14] to fit the data. Other investi-
gations [38–40] show that additional corrections may arise from electron-electron
interactions.

4.3.3 Magneto-Optical Spectra in Charged Bilayer: High-Energy
Inter-Landau Level Transitions

Using the self-consistently obtained values of the interlayer asymmetry u for a given
filling factor ν and magnetic field B, we can analyse again the optical transition spec-
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Fig. 4.8 Magneto-optical absorption spectra of bilayer graphene in strong external magnetic field
B = 14T and for filling factors ν = 8 and ν = 16 (top and bottom rows, respectively) and the case
of w = 0 (left column) and w = −100 meV (middle and right column). For the symmetric case of
w = 0, solid and dashed lines show absorption of right-handed (left-handed) and left-handed (right-
handed) circularly polarised light for the positive (negative) filling factor, respectively. For the case
of w = −100 meV, solid and dashed lines represent absorption of right and left-handed circularly
polarised light, respectively. Figure adapted from Ref. [29], Copyright (2009), with permission from
Elsevier

tra corresponding to transitions between LLs in split bands of the bilayers, Sect. 4.2.
With the help of Eq. (4.22) describing the intensity of absorption in external magnetic
field, we now numerically compute the infrared optical absorption spectra of right
(⊕) and left-handed (
) circularly polarized light for bilayer graphene in a strong
external magnetic field. As opposed to Fig. 4.3c, we describe this time a charged
bilayer with significant interlayer asymmetry u. Also, because of ν �= 0, some of
the transitions allowed in the neutral bilayer are blocked because the initial (final)
state is empty (filled). The broadening of the Landau levels is again modeled using
a Lorentzian shape with the same full width at half maximum γ = 60 meV for all
Landau levels. Numerical results for magnetic field B = 14T and filling factors
ν = 8 and ν = 16 are shown in Fig. 4.8. For the case of w = 0, the symme-
try of the system demands that the intensity of absorption of light with a given
polarisation for filling factor ν is the same as that of the light with the inverted
polarisation for filling factor −ν. This, indeed, is the case for graphs in the left col-
umn of Fig. 4.8, where black solid and dashed lines show absorption of right-handed
(left-handed) and left-handed (right-handed) circularly polarised light for the posi-
tive (negative) filling factor, respectively. Such symmetry is broken for the case of
w = −100 meV, for which the spectra for positive and negative filling factors are
shown in separate panels in Fig. 4.8, where solid and dashed lines refer to right-
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handed and left-handed polarisation, respectively. In particular, the peak visible for
some of the spectra at the radiation energy around 0.4 eV corresponds to electron
excitation between the low-energy n = 0 LL and one of the two high-energy n = 1
LLs. Its position can be used to determine the value of the coupling constant γ1, and
a small shift in the energy of this peak is due to strong magnetic field and asymmetry
u.
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Chapter 5
Electronic Raman Spectroscopy

As discussed in Sect. 4.3, experimental measurements of the bilayer graphene Landau
level structure with infrared absorption showed that tight-binding description for
neutral bilayer is unable to describe all the important physics [1]. Some theoretical
explanations were suggested, based both on many-body effects and charging effects
[2–5], but the issue has not yet been clarified. It would be therefore beneficial to
have at one’s disposal another probe of the Landau level structure but with different
selection rules. Then, electronic excitations between different pairs of levels would
be measured. This could help gain more insight into the physics of the problem. In
this chapter, we investigate the possibility of using electronic Raman spectroscopy
as such a probe. In our analysis, we follow closely the paper of the author, Ref. [6].

The electronic Raman spectroscopy (ERS) can provide information about various
single-particle and collective electron excitations in the system under investigation.
In semiconductors, it has been, amongst others, employed to investigate donor and
acceptor states, plasmons and also spin-density fluctuations involving electron spin-
flip due to the spin-orbit interaction [7, 8]. The inelastic scattering of photons on
electrons in semiconductor placed in an external magnetic field was first discussed
by Wolff, who pointed out that unequal spacing of the Landau levels resulting from
nonparabolicity of the electronic bands is crucial for the electron-photon interaction
matrix elements not to vanish [9]. The features corresponding to the electronic con-
tribution to the Raman scattering in an external magnetic field were observed in many
semiconductors, for example, InSb [10] and GaAs [11]. Very recently, the Raman
spectroscopy of electronic excitations in monolayer graphene has been investigated
theoretically [12]. It has been shown that at high magnetic fields the inelastic light
scattering accompanied by the excitation of the electronic mode with the highest
quantum efficiency involves the generation of inter-band electron-hole pairs. At high
(quantizing) magnetic fields this leads to the electron excitations from the Landau
level n− (with energy εn− = −

√
2n�v/λB) in the valence band to the Landau level

n+ (εn+ =
√

2n�v/λB) in the conduction band with energies ωn = 2
√

2n�v/λB

and crossed polarisation of in/out photons. This fact should be contrasted with the
�n = ±1 selection rules for transitions between Landau levels in the absorption of
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left and right-handed circularly polarised infrared photons (first shown in [13], see
Sect. 4.2). The need for different selection rules for those two spectroscopies seems
natural, if we think in terms of conservation of the orbital momentum in a single
scattering process. It is obvious that the necessity to produce an outgoing photon in
ERS puts very different constraints on the electronic states that can be involved in
the process. Hence, electronic Raman spectroscopy provides data supplementary to
that obtained in optical absorption. The question remains whether the signal is strong
enough to be experimentally detectable. Again, some insight is given by the results
obtained for monolayer graphene in an external magnetic field: it has been shown,
among others, that the quantum efficiency I1 of the lowest peak in the spectrum is
I1 ∼ 10−13 for B = 20 T and for photons with energies in the visible range [12].
Such intensity may be possible to detect in an experiment.

Here, we investigate the contribution of the low-energy electronic excitations
towards the Raman spectrum of bilayer graphene for the incoming photon energy
� � 1 eV. Starting with the four-band tight-binding model, we derive an effective
scattering amplitude that can be easily incorporated into the two-band approximation.
We show that due to the influence of the high-energy bands, this effective scattering
amplitude is different from the contact interaction amplitude obtained if the two-
band model is chosen as the starting point for the theory. We then go on to calculate
the spectral density of the inelastic light scattering accompanied by the excitation
of electron-hole pairs in bilayer graphene. In the absence of the magnetic field, this
contribution is non-zero but constant, reflecting the parabolic dispersion of the low-
energy bands in a bilayer crystal. In doped structures a sharp step at twice the Fermi
energy is expected as the transitions below that threshold are blocked. In an external
magnetic field, similarly to monolayer graphene, the dominant Raman-active modes
are the n− → n+ inter-Landau-level transitions with crossed polarisation of in/out
photons. Finally, we estimate the quantum efficiency of a single n−→n+ transition
peak in the magnetic field of 10 T to be In−→n+ ∼ 10−12 for the incoming photon
energy of the order of 1 eV [6].

5.1 General Considerations

To describe the electronic contribution to Raman scattering, we start by discussing
the angle-resolved probability of the Raman scattering, w(q̃). It is given as a ratio
of the energy flux of the outgoing photons scattered from the state with the initial
momentum q into a state with momentum q̃,1 φout

q̃←q , to the energy flux of the

incoming photons with the initial momentum q, φin
q ,

w(q̃) =
φout

q̃←q

φin
q
. (5.1)

1 For further benefit, we treat q and q̃ as two-dimensional and in the plane of the sample. The third,
out-of-plane component, only becomes explicitly important in Eq. (5.3).
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The energy flux of the incoming photons is given by the number of photons with
momentum q, nq , found in volume V , each carrying energy �, φin

q = �nq
V . The

energy flux of the outgoing photons is described by the number of photons scattered
from q to q̃ in unit time, ṅ q̃ , and originating from an area S of the material, their

energy �̃ and the speed of light, c, as φout
q̃←q =

�̃ṅ q̃←q
Sc . We assume that the only

processes creating the outgoing photons in the state with momentum q̃ are those
under consideration here and therefore,

ṅ q̃←q = S

2π�3

∫
dp
∣∣R̄∣∣2 nq fi

(
1− f f

)
δ
(
εi + ω − ε f

)
,

where i and f denote the initial and final state, respectively, fi and f f are filling
factors of the corresponding state, R̄ is the scattering amplitude included through
the Fermi’s golden rule and we integrated out the electron states. Using Eq. 5.1, the
angle-resolved probability of the Raman scattering, w(q̃ ≈ 0), is

w = 2V �̃

cπ�3�

∫
dp|〈 f |R̄|i〉|2 × fi

(
1− f f

)
δ
(
εi + ω − ε f

)
. (5.2)

Here, we have already taken into account the spin and valley degeneracies (the latter
important in graphene systems).

After adding up contributions from all final states with the same magnitude of
the momentum q̃ = |q̃|, we obtain the angle-integrated spectral density of Raman
scattering g(ω),

g(ω) = V
∫∫

d q̃dq̃z

(2π�)3
w δ

(
�̃− c

√
q̃2 + q̃2

z

)
, (5.3)

which gives the probability for the incoming photon to scatter inelastically with
energy �̃ = � − ω and describes the shape of the experimental spectrum. Finally,
we also consider in this chapter the total quantum efficiency (probability) for an
incoming photon to scatter inelastically on an electron with creation of an electron-
hole pair, I = ∫ dω g(ω). This last quantity tells us what part of the incoming beam
of photons undergoes the inelastic scattering under consideration.

5.2 The Two-Photon Field and the Electron-Photon Interaction

As a starting point for our consideration of ERS for bilayer graphene, we choose
the tight-binding Hamiltonian in the linear approximation, Eq. ( 2.9). We shall keep
terms up to quadratic in the electronic momentum p, but disregard the least important
couplings, v4 and γn . Then, using the set of Pauli matrices, σx , σy and σz , the
Hamiltonian Ĥξ ( p) describing a single electron with momentum p in the vicinity
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of the valley Kξ can be written in the form

Ĥξ ( p) = ξ
(
v3(σ · p)T vσ · p
vσ · p ξγ1σx

)

− μ
( v3

v
[σx (p2

x − p2
y)+ 2σy px py] σx (p2

x − p2
y)− 2σy px py

σx (p2
x − p2

y)− 2σy px py 0

)
. (5.4)

To describe the process of inelastic scattering of light on electrons in our mate-
rial, we consider an experimental setup in which incoming laser light of energy
� 	 γ1, in-plane momentum q (out-of-plane component of momentum equal to
qz =

√
�2/c2 − q2) and polarisation l is shined onto to the sample. Scattered pho-

ton has polarisation l̃ , in-plane momentum q̃ and energy �̃ = � − ω. We also
assume the temperature T to be smaller than the Raman shift, kB T < ω (kB is
the Boltzmann’s constant). As shown in the previous section, all physical quanti-
ties of interest are ultimately connected to the quantum mechanical amplitude, R̄,
describing the electron transition between the initial and final states. In our case,
the inelastic light scattering may occur via (I) a one-step process [so called contact
interaction, depicted in Fig. 5.1a] or (II) a two-step process involving an intermediate
state [shown in Fig. 5.1b]. The former process is the usual inelastic scattering of an
incoming photon on an electron with transfer of energy to the electron. In contrast,
the two-step process involves: the absorption (or emission) of a photon with energy
� (�̃) which transfers an electron with momentum p from an occupied state in the
valence band into a virtual intermediate state (energy is not conserved at this stage),
followed by emission (or absorption) of the second photon with energy �̃ (�) which
transfers the electron into the final state. As a result of both a single one or two-step
process, an electron-hole pair in the low-energy bands is created with the electron
and the hole having almost the same momentum ( p + q − q̃ and p, respectively),
since q, q̃ 
 p and the momentum transfer from light is negligible (v/c ∼ 3 ·10−3).
Therefore, p + q − q̃ ≈ p and due to the approximately electron-hole symmetric
band structure in the vicinity of Brillouin zone corners, the electron initial and final
energies εi and ε f are related, ε f ≈ −εi .

To include the interaction of the electrons with photons, we construct the canonical
momentum [ p− e(A(r, t ′)+ Ã(r, t ′′))], where A(r, t ′) and Ã(r, t ′′) are the vector
potentials of the incoming and outgoing light, respectively,

A(r, t ′) = 1√
2ε0V�

(
lei(q·r−�t ′)/�bq,qz ,l + H.c

)
;

Ã(r, t ′′) = 1√
2V ε0�̃

(
l̃
∗
e−i(q̃·r−�̃t ′′)/�b†

q̃,q̃z ,l̃
+ H.c.

)
,

with bq,qz ,l (b†
q,qz ,l

) denoting an annihilation (creation) operator for a photon with
in-plane momentum q, out-of-plane momentum component qz and polarisation l .
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(a) (b)

Fig. 5.1 Schematic depiction of the (a) one and (b) two-step ERS processes considered in this
text, shown for the valley K+. For the two-step processes, grey (black) solid lines indicate the first
(second) step of the process. Also, in (b), two different cases of the possible two-step process, one
involving an intermediate state in the high-energy band (sequence with the dark blue ball on the
red high-energy band) and one only involving states in the low-energy bands, have been shown.
The light blue (purple) circle denotes the hole (electron) in the final electron-hole pair, while the
dark blue circle represents the intermediate virtual state (if relevant). Note that for any intermediate
state |ν〉 with energy εν , �, �̃	 εν

We then expand the Hamiltonian Ĥξ ( p − e[A+ Ã]) up to the second order in the
vector potential and write down the interaction part,

Ĥ int = ĵ ·(A(r, t ′)+ Ã(r, t ′′)
)+ e2

2

∑

i, j

∂2 Ĥξ

∂pi∂p j
Ai Ã j , (5.5)

where ĵ = −e ∂ Ĥξ

∂ p is the current operator.

5.3 Scattering Amplitude of the ERS Process

We now turn to the calculation of the scattering amplitude R̄. In our case, it is a sum
of two contributions: δR due to the one-step processes (contact interaction) and R
due to the two-step processes.
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5.3.1 Contribution of the Contact Interaction

The contact interaction scattering amplitude δR results from the second term in
the interaction Hamiltonian (5.5). It is characterised by operators ∂2 Ĥ/∂pi∂p j and
hence, the first term in the Hamiltonian in (5.4) does not produce any contact inter-
action processes, as it contains only terms linear in the electron momentum p. The
only contribution to the contact interaction comes from the second term in the right-
hand side of Eq. (5.4), which includes terms quadratic in p. Such a contribution
involves prefactor ∼ v2

6γ0�
(the 1

�
coming from the normalisation of the two-photon

field) determining the smallness of the amplitude δR of one-step Raman scattering of
photons with energy less than the band-width of graphene, ∼6γ0. Detailed calcula-
tions yield the contribution to the scattering amplitude due to the contact interaction
obtained within the four-band model,

δR = e2
�

2v2

6ε0V γ0

√
��̃

L·d; (5.6)

d = (lx l̃∗y + ly l̃∗x , lx l̃∗x − ly l̃∗y); L = (Lx ,Ly
) ;

Lx =
(− v3

v
σy σy

σy 0

)
; Ly =

(− v3
v
σx −σx

−σx 0

)
.

5.3.2 Contribution of the Two-Step Processes

To find R, we describe a two-step transition which involves an intermediate virtual
state |ν〉 with energy εν , as

R = −1

2ε0V
√
��̃

×

⎧
⎪⎨

⎪⎩

∑

ν

∞∫

−∞

t ′∫

−∞
e

i
�
(ε f −εν)t ′( j · l̃∗)e −i

�
(q̃·r−�̃t ′)|ν〉〈ν|e i

�
(q·r−�t ′′)( j ·l)e i

�
(εν−εi )t ′′dt ′dt ′′

+
∑

ν

∞∫

−∞

t ′∫

−∞
e

i
�
(ε f −εν)t ′( j ·l)e i

�
(q·r−�t ′)|ν〉〈ν|e −i

�
(q̃·r−�̃t ′′)( j · l̃∗)e i

�
(εν−εi )t ′′dt ′dt ′′

⎫
⎪⎬

⎪⎭
.

(5.7)

We point out that the virtual state |ν〉may belong to any of the four bands, including
the high-energy bands. Depending on the accompanying photon process, electron
momentum in the state |ν〉 is either p + q or p − q̃. In Eq. (5.7), the first (second)
term corresponds to processes in which the photon is absorbed (emitted) in the first
step and emitted (absorbed) in the second step of the process. Integration over time
in those expressions can be performed by changing variables to τ = t ′ − t ′′, which
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varies at the scale of ω−1, ω = � − �̃, and t̄ = (t ′ + t ′′)/2, which varies at the
scale of �̄−1, �̄ = (� + �′)/2 	 ω. It is important that in the experimentally
applicable situation, �, �̃ 	 γ1 [14–22]. Also, we concentrate here on the low-
energy excitations in the final states with ω 
 γ1 (that is, the initial and final state
belong to the low-energy bands). This allows us to expand factors 1

±�̄−εν resulting
from the integration over τ in powers of (εν/�), keeping terms of the order of 1
and (γ1/�) (the latter appear when the virtual state is taken to be in the high-energy
bands) and to perform summation over the intermediate virtual states of the process.
Consequently, the amplitude R takes the form of a matrix

R ≈ e2
�

2v2

ε0V�
√
��̃

{
−i

(
σz 0
0 σz

)(
l × l̃

∗)

z
+ 1

�
M·d

}
δ
(
ε f − εi − ω

)
, (5.8)

M = (Mx ,My),

Mx =
(

γ1σy ξv
(
σy px + σx py

)

ξv
(
σy px + σx py

)
0

)
,

My =
(

γ1σx ξv
(
σx px − σy py

)

ξv
(
σx px − σy py

)
0

)
.

5.3.3 The Final Form of the Raman Scattering Amplitude

The scattering amplitude R̄ of the Raman process accompanied by electron-hole
excitation is a sum of R and δR. From the comparison of the corresponding prefactors

e2�2v2

6ε0γ0

√
��̃

, Eq. 5.6, and e2�2v2

ε0�

√
��̃, Eq. 5.8, it follows that δR 
 R, as 6γ0 	 �.

Hence, we can neglect the contribution of the one-step processes,

R̄ = R+ δR ≈ R. (5.9)

Also, we are mostly interested in the low-energy properties of our material.
To analyse the contribution of electronic modes toward the low-energy part of Raman
spectrum with the photon energy shift ω < γ1/2, which is determined by the exci-
tation of the electron-hole pairs in the low-energy bands with vp 
 γ1, we use the
effective low-energy Hamiltonian, Eq. 2.12 in Sect. 2.3,

Ĥeff = −v
2

γ1

[(
p2

x − p2
y

)
σx + 2px pyσy

]
. (5.10)

To characterise the excitation of the low-energy modes corresponding to the tran-
sitions between low-energy band states described by Ĥeff, we take only the part of R
which acts in that two-dimensional Hilbert space, keep terms in the lowest relevant
order in vp/γ1 
 1 and γ1/�
 1, and write down an effective amplitude Reff,

http://dx.doi.org/10.1007/978-3-642-30936-6_2
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Reff ≈ e2
�

2v2

ε0V�
√
��̃

{
−iσz

(
l × l̃

∗)
z +

γ1

�

[
σx dy + σydx

]}
. (5.11)

We point out that the above matrix cannot be obtained within a theory constrained
by the two-band approximation from the very beginning. Of course, one can try
to define a contact-interaction-like term due to the terms quadratic in the electron
momentum p in the Hamiltonian in Eq. (5.10), which will carry a prefactor e2�2v2

ε0γ1�
.

Such a prefactor may suggest a greater magnitude of scattering than prefactor e2�2v2

ε0�2

in the amplitude Reff above. However, the scattering amplitude obtained within the
two-band model can only be applied to photons with � < γ1, as the necessary
constraint is that the electron at no stage of the process leaves the energy range
where the Hamiltonian (5.10) is applicable, that is energy range |ε| 
 γ1. This is
a situation not relevant for Raman spectroscopy since it is usually performed with
laser beams using � ∼ 1.3–2.8 eV [14–22].

5.4 ERS Spectra in the Absence of the Magnetic Field

With all the important physical quantities introduced in Sect. 5.1, the only remaining
step is to use the expression for the effective scattering amplitude Reff, Eq. (5.11)
(the necessary initial and final states can be then expressed like in Eq. (3.16),
Sect. 3.3.1), to obtain the following angle-resolved probability of the Raman scatter-
ing, w(q̃ ≈ 0),2

w ≈ γ1e4�v2

cε2
0 V�4

{
�s + γ 2

1
2�2�o

}
θ(ω − 2μ),

�s =
∣∣∣l × l̃

∗∣∣∣
2
, �o = 1+ (l × l∗

) · (l̃ × l̃
∗)
.

(5.12)

Above, the first term with polarization factor�s describes the contribution of photons
scattered with the same circular polarization as the incoming beam. The second
term, with polarization factor �o, represents the scattered photons with circular
polarization opposite to the incoming beam.

In turn, the angle-integrated spectral density of Raman scattering g(ω) is

g(ω) = 2

(
e2

4πε0�c

v

c

)2
γ1

�2

{
2�s + γ 2

1

�2�o

}
θ(ω − 2μ). (5.13)

2 In the integration over the electronic momentum p we neglected the trigonal warping of the
electronic dispersion caused by v3. As discussed in Sect. 2.3, it is only important for very low
energies. The density of states, apart from the vicinity of the Lifshitz transition, remains almost
unaffected (see Fig. 2.5).

http://dx.doi.org/10.1007/978-3-642-30936-6_3
http://dx.doi.org/10.1007/978-3-642-30936-6_3
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Constant spectral density g as a function of ω reflects the parabolicity of the
low-energy bands and thus, energy-independent density of states in the bilayer. This
is different in monolayer graphene, where g(ω) ∝ ω [12], what reflects the linear
dependence of the density of states of electron-hole pairs on energy. The characteristic
of monolayer graphene crossed polarisation of in/out photons is retained in the case
of the bilayer system.

Experimentally, constant spectral density g in undoped bilayer graphene is impos-
sible to distinguish from a homogeneous background. However, if the chemical
potential μ is not at the neutrality point, then transitions with ω < 2μ are blocked.
Although new processes, resulting in the creation of the intraband electron-hole pair
excitations and very small ω, are possible for μ �= 0, their contribution carries
additional prefactor v/c ∼ 1

300 [9] deciding their smallness in comparison to the
interband contribution. Explicit calculation performed for the monolayer graphene
showed that the quantum efficiency of the intraband transitions was of the order of
10−15 [12]. In contrast, for chemical potential μ ∼ 50 meV (corresponding to addi-
tional carrier density n0 ∼ 1.5× 1012 cm−2), the lost quantum efficiency due to the
blocked interband transitions is, according to Eq. (5.13), �I ∼ 10−12.

5.5 ERS Spectra in Quantizing Magnetic Fields

The quantization of electron states into Landau levels gives the Raman spectrum
due to the electronic excitations, a pronounced structure which can be used to detect
their contribution experimentally. We only consider here low-energy Landau levels,
as at high energies the Landau level broadening due to, for example, electron-phonon
interaction, will smear out the LL spectrum. In strong magnetic fields, we are justified
to use the low-energy Hamiltonian as shown in Eq. (5.10), with the eigenvalues and
eigenstates as discussed in Sect. 4.1.1,

εnα = α 2�
2v2

γ1λ
2
B

√
n(n − 1),

�nα =
(
ψn

0

)
for n = 0, 1, �nα = 1√

2

(
ψn

αψn−2

)
for n ≥ 2, (5.14)

where λB = √�/eB is the magnetic length, n is the Landau level index, α = ±
denotes the conduction (+) or valence (−) band. Also, ψn is the normalised n-th
Landau level wavefunction. We recall that in a neutral bilayer, all LLs have addi-
tional four-fold degeneracy (two due to the electron spin and two due to the valley).
Moreover, levels n = 0 and n = 1 are degenerate at ε = 0 giving rise to an 8-fold
degenerate LL.

We can project our effective transition amplitude Reff onto the eigenstates �nα

to find the electronic Raman spectrum in the presence of a strong external magnetic
field. This leads to the following selection rules for allowed electronic transitions

http://dx.doi.org/10.1007/978-3-642-30936-6_4
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(a) (b)

Fig. 5.2 a Schematic drawing of allowed inter-LL transitions accompanying the Raman scattering.
The solid (dashed) line represents the first dominant (weaker) transition 2− ← 2+ (pair 2− ← 0
and 0←2+). b The low-energy electronic contribution to the Raman spectrum in bilayer graphene.
The solid (dashed) line represents the spectrum in the presence (absence) of an external magnetic
field and chemical potential μ = 0 (μ �= 0). For the spectrum in a magnetic field, corresponding
inter-LL transitions have been attributed to each peak. Figure reprinted from Ref. [6], Copyright
(2010), with permission from APS

from the initial level n−:

(i) n−→n+; (i i) (n ∓ 1)−→(n ± 1)+. (5.15)

Among those, (i) is the dominant transition. These selection rules, represented
schematically in Fig. 5.2, confirm our expectations and show explicitly that using
Raman spectroscopy, one can probe different electronic excitations than in optical
spectroscopy, where the selection rules are �n = ±1 ([13, 23], see Sect. 4.2). For
a neutral bilayer, the angle-integrated spectral density g(ω) of Raman scattering in
the magnetic field is equal to

g(ω) ≈ 16�s

(
e2

4πε0�c

v

c

)2(
�v

λB�

)2 ∑

n≥2

γ (ω − 2εn+)+ δg(ω),

δg(ω) = 8�o

(γ1

�

)2
(

e2

4πε0�c

v

c

)2(
�v

λB�

)2

⎡

⎣
∑

n=1,2

2γ (ω−ε(n+1)+)+
∑

n≥3

γ (ω−ε(n+1)+−ε(n−1)+)

⎤

⎦ . (5.16)

Here, we used Lorentzian γ (x) = π−1�/(x2 + �2) with a width specified by �
to model the broadening of Landau levels. The term δg(ω) describes the spectral
density of the (n∓1)−→(n ± 1)+ transitions, which is a correction to the dominant

http://dx.doi.org/10.1007/978-3-642-30936-6_4
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22 / c/ c22 6262 22

(a) (b)

Fig. 5.3 Comparison of electronic contributions to the Raman spectra in neutral bilayer graphene
for two different energies of incoming photons: (a) � = 1 eV, (b) � = 2 eV. For each case, total
spectral density g(ω) and contributions due to the n−→n+ and (n ± 1)−→ (n ∓ 1)+ modes are
shown in the solid, dot-dashed and dashed line, respectively. Intensity scale is the same on (a) and
(b); values of the parameters used: v = 106m/s, γ1 = 0.4 eV, B = 10 T, and � = 0.012 eV. Figure
reprinted from Ref. [6], Copyright (2010), with permission from APS

contribution due to the n−→n+ transitions given by the first term on the right hand
side of Eq. (5.16).

An example of the low-energy electronic contribution to the Raman spectrum in
the neutral bilayer in strong magnetic field is shown with a solid line in Fig. 5.2b. The
dominant features are peaks due to the n−→n+ transitions with the first being the
2−→ 2+ transition. We remind again that within the LL indexing scheme applied
here, indices 0 and 1 are only used to denote one valley-degenerate level each and
no α index is needed for them. The quantum efficiency of a single n−→n+ peak in
Fig. 5.2b is approximately

In−→n+ ≈
(
v2

c2

e2/λB

ε0π�

)2

= v4e5 B

π2c4ε2
0��2

(5.17)

per incoming photon, which at the field B∼10 T gives In−→n+∼10−12 for� ∼ 1 eV
photons, comparable to similar transitions in monolayer graphene [12].

A weaker feature in Fig. 5.2b is the first and the only visible (n∓1)−→(n ± 1)+
peak due to both 2−→0 and 0→2+ transitions, positioned to the left of the 2−→2+
peak. The quantum efficiencies of the (n ± 1)−→ (n ∓ 1)+ transitions are smaller
by the factor

( γ1
�

)2 in comparison to the n− → n+ transitions. This is different
from the monolayer graphene case, where the corresponding ratio between quantum
efficiencies of (n± 1)−→(n∓ 1)+ and n−→n+ transitions is

(
ω
�

)2, much smaller
than for the bilayer. The term δg(ω) can be further emphasized by changing the energy
of incoming photons �. Shown in Fig. 5.3a, b, is a comparison of the total spectral
density g(ω) and contributions due to each mode separately, for two different energies
of incoming photons, � = 2 eV and � = 1 eV. The intensity scale is the same on
both figures and in each case, the total spectral density g(ω), the contributions due
to the n−→n+ and (n ± 1)−→(n ∓ 1)+ modes are shown in the solid, dot-dashed
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and dashed line, respectively. The dominant contribution, resulting from the Raman
scattering accompanied by the n− → n+ electronic transitions, is proportional to
the inverse square of the incoming photon energy �. Therefore, two peaks drawn
with dot-dashed lines are roughly four times smaller on the right figure. The spectral
density of the (n± 1)−→(n∓ 1)+ transitions is smaller by a further factor

( γ1
�

)2 in
comparison to the n−→n+ transitions. Hence, this contribution, shown with dashed
lines, is close to zero on the right figure, while on the left, the first of the two smaller
peaks corresponding to symmetric transitions 2−→0, 0→2+ and 3−→1, 1→3+ is
still visible in the total spectral density. Because of the contrasting polarization factors
in Eq. (5.16), contributions of different modes, n−→ n+ or (n ± 1)−→ (n ∓ 1)+,
to the total spectral density could be separated using polarizers. If the polarizers
were set as to collect only photons with circular polarization identical to that of the
incoming photons, then the n−→n+ contribution would be measured. However, if
only the photons with polarization opposite to the polarization of the incoming beam
were detected, the (n ∓ 1)−→(n ± 1)+ contribution would be determined.

Increasing the filling factor leads first to the 2−→0 and 3−→1 transitions being
blocked when LLs with n = 0 and n = 1 are completely filled. Therefore, the height
of the two corresponding (n ± 1)−→ (n ∓ 1)+ peaks is halved (transitions 0→2+
and 1→3+ are still allowed). Next to disappear are the first n−→n+ peak, that is
2−→2+, and the remains of the first (n± 1)−→(n∓ 1)+ peak, (due to the 0→2+
transition) because of the filled LL 2+. Complete filling of each following Landau
level results in the disappearance of the next n− → n+ and (n ± 1)− → (n ∓ 1)+
peaks.
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Chapter 6
Conclusions

In the previous chapters, we developed theories based on the tight-binding model
for π electrons, in order to describe the angle-resolved photoemission, magneto-
optical absorption and electronic Raman spectra of bilayer graphene. The results for
the first two can be compared to experimental spectra. Specifically, the constant-
energy ARPES maps found in literature (in particular in the supporting on-line
material to the article by Ohta and co-workers [1]), closely resemble those shown
in the Figs. 3.3, 3.4 and 3.6. First of all, we can test our conclusion about the
importance of the electronic states in the high-energy bands for the intensity of
bilayer graphene ARPES maps. Indeed, asymmetric intensity of the two peaks is
always observed in experiment. The change in the density of states due to symmetry
breaking parameters, in particular the interlayer asymmetry u, has also been observed
with ARPES. The constant-energy maps are then modified very much like shown by
our model. The experimentally obtained ARPES spectra were also detailed enough
for the magnitude of the direct interlayer coupling γ1 to be extracted. Unfortunately,
little experimental data presented in the aforementioned works do not allow testing
of other predictions of our model, that is, whether the sign of γ1 as well as magnitude
and sign of γ3 can be determined.

In the case of the magneto-optical absorption, the spectra shown in Figs. 4.3c and
4.8 can be compared to those predicted and experimentally measured for optical
absorption [2–6]. The main feature—the peak corresponding to the onset of the tran-
sitions between the low-energy and split bands—is similar in both cases and allows
for an independent check on the value of the coupling γ1. However, it is very difficult
to comment on the relevance of the main point of the considerations in Chap. 4—the
contribution of the gate-induced interlayer asymmetry to the interpretation of
the experimental results of the work of Henriksen et al. [7]. Although the presented
theory suggests the presence of the gap, it is definitely not the only factor responsi-
ble for the observed deviations from the ‘neutral bilayer’ model. In fact, some of the
many-body theories show significantly better agreement with the experiment [8, 9].

The situation is different for the electronic Raman spectroscopy. Although
inelastic scattering of light is a widely used experimental technique for characterisa-
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tion of carbon materials and has been employed for graphene systems specifically to
investigate not only the electron-phonon coupling but also number of layers, disorder
or doping level, the electronic contribution to the Raman spectra has not yet been
examined in detail. Therefore, theory presented in Chap. 5 goes one step beyond
being tested by comparison to available measurements. The absolute numbers pre-
dicted for the quantum efficiencies of the inelastic light scattering accompanied
by electron-hole excitations suggest that some of the features discussed may be
observable. In our opinion, in the light of the complications in the interpretation of
the experimental results of experiments of the type of the one by Henriksen and
co-workers, examination of the ERS spectra in an external magnetic field would
provide an important additional way of investigating the Landau level structure of
bilayer graphene. Departures from the theory presented here could then strengthen
the initial claim made in Ref. [7] about the influence of the many-body physics on the
inter-LL transitions. This would also give more insight on the usefulness and limits
of the tight-binding approach for graphene systems.

Note, that in all three cases presented, it was important to choose as the starting
point for the theory, the four-band model. The two-band approximation, neglecting
the influence of the high-energy states, does not capture essential features of the
spectra discussed in any of the chapters. For ARPES, it cannot describe the asym-
metry in the intensity between the two-peak pattern (see Fig. 3.3 and discussion in
Sect. 3.3.2), which persists to energies much smaller than γ1. The high-energy bands
are essential in order to obtain the self-consistent values of the interlayer asymmetry
both in the absence and presence of the magnetic field. The two-band approximation,
for obvious reasons, also cannot describe the inter-Landau-level transitions between
the low-energy and split bands caused by absorption of incoming photons. Finally,
for inelastic scattering of photons, we showed that the ERS scattering amplitude for
experimentally relevant energies of the incoming beam cannot be properly described
within the two-band approximation alone. Due to the importance of the high-energy
bands in the two-step processes, proper results can only be obtained if the full four-
band model is used as the starting point. All those arguments show how carefully any
problem related to the electronic structure of bilayer graphene has to be considered
before only the two-band approximation is used to predict or explain its results. Good
understanding of the physical processes involved is required if the theoretical model
is to be correct and useful.
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